Significados de referencia asociados al concepto de probabilidad intuitiva
DOI:
https://doi.org/10.24220/2318-0870v28e2023a8269Palavras-chave:
Significado de un concepto matemático, Enseñanza de la probabilidad, Probabilidad intuitivaResumo
Las ideas intuitivas de probabilidad, surgidas a través de las aportaciones de Pascal y Fermat, en la Edad Moderna, se mantienen vigentes y promueven los significados asociados a éstas en los currículums de los diferentes niveles educativos. En la presente investigación, se
identifican los diferentes significados asociados al concepto intuitivo de la probabilidad, tomando como referencia algunos documentos de la historia de la
estadística. Se utiliza la noción del significado de un concepto matemático desde el análisis didáctico, a través de sus tres componentes: estructura conceptual; registros de representación; y fenomenología. El método
del análisis de contenido se aplicó a 5 documentos que describen el desarrollo histórico de la estadística. Como resultado, se han identificado como significados de referencia términos como fenómeno aleatorio y conceptos como la equiprobabilidad, como
representación el lenguaje ordinario. En todos los casos, estos componentes toman sentido en el contexto de los juegos de azar.
Downloads
Referências
Alsina, C. Mañana será otro día: un reto matemático llamado futuro. In: Goñi, J. (coord.). El currículum de matemáticas en los inicios del siglo 21. [S.l.]: Graó, 2000. p. 13-21
Alsina, C.; Vásquez. La probabilidad en educación primaria de lo que debería enseñarse a lo que se enseña. Revista de la Didáctica de las matemáticas, n. 71, p. 47-52, 2016.
Balcaza, T.; Contretas, A.; Font, V. Análisis de libros de texto sobre la optimización en el Bachillerato. Bolema, v. 31, n. 59, p. 1061-1081, 2017.
Batanero, C.; Gea, M.; Arteaga, P. El currículo de estadística: Reflexiones desde una perspectiva internacional. Uno, v. 59, n. 1, p. 9-17, 2012.
Batanero, C. Significados de la probabilidad en la educación secundaria. Revista Latinoamericana de Matemática Educativa, v. 8, n. 3, p. 247-263, 2005a.
Batanero, C. Statistical literacy: statistics long after school. In: International Conference on Teaching Statistics, 2005 [S.l.]. Proceedings [...]. [S.l.]: International Statistics Institute, 2005b. p. 445-450.
Batanero, C. et al. Research on Teaching and Learning Probability. In: International Congress on Mathematical Education ICME-13 Topical Surveys, 13., [S.l.]. Proceedings [...]. Germany: [s.n.], 2016. p. 1-33.
Batanero, C. Understanding randomness: Challenges for research and teaching. In: CERME 9 - Ninth Congress of the European Society for Research in Mathematics Education, 2015, Prague. Proceedings [...] . Prague: [s.n.], 2015. p. 34-49.
Begué, N. et al. Comprensión del enfoque frecuencial de la probabilidad por estudiantes de Educación Secundaria Obligatoria.
In: Muñoz-Escolano, J. et al. (ed.). Investigación en Educación Matemática XXI. Zaragoza: SEIEM, 2017. p. 137-146.
Borovcnik, M.; Kapadia, R. A historical and philosophical perspective on probability. In: Chernoff, E.; Sriraman, B. (ed.). Probabilistic thinking: presenting plural perspectives. New York: Springer, 2014. p. 7-34
Burgos, M.; Godino, J. Modelo ontosemiótico de referencia de la proporcionalidad: Implicaciones para la planificación curricular en primaria y secundaria. AIEM Avances de Investigación en Educación Matemática, v. 18, n. 1, p. 1-20, 2020.
Cañadas, M.; Gómez, P.; Pinzón, A. Análisis del contenido. In: Gómez, P. (ed.). Formación de profesores de matemáticas y práctica de aula: conceptos y técnicas curriculares. Bogotá: Universidad de los Andes, 2018. p. 53-112.
Gómez, P. Desarrollo del conocimiento didáctico en un plan de formación inicial de profesors de matemáticas de secundaria. 2007. Tese (Doutorado) – Universidad de Granada, España, 2007.
Gómez, P.; Contreras, J. Significados de la probabilidadd en el currículo español para la educación primaria. Actas de las Jornadas Virtuales en Didáctica de la Estadística, Probabilidad y Combinatoria. Granada: Universidad de Granada, 2013. p. 571-578. Disponible en: https://www.ugr.es/~jmcontreras/pages/Investigacion/Actas%20jornadas.pdf
Hacking, I. The emergence of probability a philosophical study of early ideas about probability, induction and statistical inference. New York: Cambridge, 1975.
Hernández, J.; Zamora, R.; Lupiañez, J. Estudio comparativo de los significados y expectativas de aprendizaje del límite en tres libros y el currículo oficial. PNA, v. 14, n. 4, p. 241-269, 2020.
International Conference on Teaching Statistics, 11., 2022, Rosario. Proceedings [...]. Rosario: Argentina, 2022. Disponible en:https://iase-web.org/Conference_Proceedings.php?p=ICOTS_11_2022. Accceso en: 10 dec. 2023.
Jankvist, T.; Van den Heuvel-Panhuizen, M.; Veldhuis, M. In: Congress of the European Society for Research in Mathematics Education, 11., 2019, [S.l.]. Proceedings [...]. Utrecht: Freudenthal Group & Freudenthal Institute; Utrecht University; ERME, 2019. Disponible en: http://erme.site/wp-content/uploads/archives/CERME11_Proceedings_2019.pdf. Acceso en: 10 dec. 2023.
Mateos, G.; Morales, A. Historia de la Probabilidad y de la Estadística. In: A.C. (ed.). Historia de la probabilidad (desde sus orígenes hasta Laplace) y su relación con la historia de la teoría de la decisión. Madrid, España: Alfa Centauro, 2002. p. 1-18.
Mayer, L. Rutas de incertidumbre ideas alternativas sobre la génesis de la probabilidad, siglos XVI y XVV. Ciudad de México, México: Fondo de Cultura Económica, 2015.
Moreno, J. Statistical literacy: statistics long after school. In: International Conference of Teaching Statistics, 5,. 1998, [S.l.]. Proceedings [...]. [S.l.]: International Statistics Institute, 1998. p. 445-450.
Restrepo, B.; González, J. Historia de la probabilidad. Revista Colombiana de Ciencias, v. 16, n. 1, p. 83-87, 2003.
Rico, L. Aproximación a la investigación en Didáctica de la Matemática. Avances de investigación en Educación Matemática, v.1, n.1, p. 39-63, 2012.
Rico, L. El método del Análisis Didáctico. Unión: Revista Iberoamericana de Educación Matemática, v. 1, n. 33, p. 11-27, 2013.
Rico, L. Consideraciones sobre el currículum escolar de matemáticas. Revista EMA, v. 1, n. 1, p. 4-24, 1995.
Rico, L.; Fernández-Cano, A. Análisis didáctico y metodología de investigación. In: Rico, L.; Lupiánez, J.; Molina, M. (eds.). Análisis Didáctico en Educación Matemática. Metodología de investigación, formación de profesores e innovación curricular, Granada: Comares, S.L., 2013. p. 1-22.
Vargas, M.; Fernández-Plaza, J.; Ruíz-Hidalgo, J. Tareas propuestas por los libros de texto de 1o de bachillerato para el tema de la derivada. In: Rodríguez-Muñiz, et al. (ed.). Investigación en Educación Matemática XXII. Gijón: SEIEM, 2018. p. 594-603.
Vargas, M.; Fernández-Plaza, J.; Ruíz-Hidalgo, J. La derivada en los libros de texto de 1o de bachillerato: Un análisis a las tareas propuestas. AIEM Avances de Investigación en Educación Matemática, v. 18, n. 1, p. 87-102, 2020.