Could eight obesity-related indices be effective in predicting the risk of metabolic syndrome in young and middle-aged adults? A cross-sectional study

Autores/as

Palabras clave:

Abdominal volume index, Lipid-accumulation product, Metabolic syndrome, Visceral adiposity index, Waist-triglyceride index

Resumen

Objective
Metabolic syndrome is common endocrine disease worldwide. Anthropometric measurements and obesity-related indices can be used effectively in its diagnosis. This study investigates the use of obesity-related indices in defining metabolic syndrome.
Methods
Cross-sectional data from 2,720 young and middle-aged individuals were analyzed. A body shape index, abdominal volume index, body adiposity index, body roundness index, conicity index, lipid accumulation product, visceral adiposity index, and waist-triglyceride index were evaluated. Receiver operating characteristic analysis was performed.
Results
The odds ratio and 95% confidence interval (95% CI) values for the risk of metabolic syndrome were 1.035 (1.021-1.049) for waist-triglyceride index, 1.045 (1.012-1.079) for body adiposity index (p<0.05), 1.084 (1.051-1.119) for lipid accumulation product, and 5.789 (4.536-7.388) for visceral adiposity index (p<0.001).
Conclusion
It was concluded that waist-triglyceride index, body adiposity index, lipid accumulation product, and visceral adiposity index can be used as alternatives for identifying metabolic syndrome in adults. Cut-off values for waist-triglyceride index, lipid accumulation product, and visceral adiposity index indices were found for the presence of metabolic syndrome.

Citas

Endukuru CK, Gaur GS, Dhanalakshmi Y, Sahoo J, Vairappan B. Cut-off values and clinical efficacy of body roundness index and other novel anthropometric indices in identifying metabolic syndrome and its components among Southern-Indian adults. Diabetol Int. 2021;13(1):188-200.

Obeidat AA, Ahmad MN, Haddad FH, Azzeh FS. Alarming high prevalence of metabolic syndrome among Jordanian adults. Pak J Med Sci. 2015;31(6):1377-82.

Venugopal V, Dongre AR, Saravanan S. Prevalence and determinants of metabolic syndrome among the rural adult population of Puducherry. Indian J Community Med. 2019;44(1):21-5.

Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12.

Swarup S, Goyal A, Grigorova Y, Zeltser R. Metabolic syndrome. Treasure Island (FL): StatPearls; 2022.

Fathi Dizaji B. The investigations of genetic determinants of the metabolic syndrome. Diabetes Metab Syndr. 2018;12(5):783-9.

Nilsson PM, Tuomilehto J, Rydén L. The metabolic syndrome: What is it and how should it be managed? Eur J Prev Cardiol. 2019;26(2):33-46.

Al-Shami I, Alkhalidy H, Alnaser K, Mukattash TL, Al Hourani H, Alzboun T, et al. Assessing metabolic syndrome prediction quality using seven anthropometric indices among Jordanian adults: A cross-sectional study. Sci Rep. 2022;12(1):21043.

Stefanescu A, Revilla L, Lopez T, Sanchez SE, Williams MA, Gelaye B. Using A Body Shape Index (ABSI) and Body Roundness Index (BRI) to predict risk of metabolic syndrome in Peruvian adults. J Int Med Res. 2020;48(1):300060519848854. http//doi.org/10.1177/0300060519848854

Baveicy K, Mostafaei S, Darbandi M, Hamzeh B, Najafi F, Pasdar Y. Predicting metabolic syndrome by visceral adiposity index, body roundness index and a body shape ındex in adults: A cross-sectional study from the Iranian RaNCD cohort data. Diabetes Metab Syndr Obes. 2020;13:879-87.

Chiu TH, Huang YC, Chiu H, Wu PY, Chiou HYC, Huang JC, et al. Comparison of various obesity-related indices for identification of metabolic syndrome: A population-based study from Taiwan biobank. Diagnostics. 2020;10(12):1081.

Thomas DM, Bredlau C, Bosy-Westphal A, Mueller M, Shen W, Gallagher D, et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity. 2013;21(11):2264-71.

Lohman TG, Roche AF, Martorell R, editors. Anthropometric standardization reference manual. Champaign, IL: Kinetics Books; 1988.

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499-502.

Alberti KG, Zimmet P, Shaw J. Metabolic syndrome: A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469-80.

Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. Plos One. 2012;7(7):e39504.

Guerrero Romero F, Rodríguez Morán M. Abdominal volume index. An anthropometry-based index for estimation of obesity is strongly related to impaired glucose tolerance and type 2 diabetes mellitus. Arch Med Res. 2003;34(5):428-32.

Bergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. A better index of body adiposity. Obesity (Silver Spring). 2011;19(5):1083-89.

Valdez R, Seidell JC, Ahn YI, Weiss KM. A new index of abdominal adiposity as an indicator of risk for cardiovascular disease: A cross-population study. Int J Obes Relat Metab Disord. 1993;17(2):77-82.

Kahn HS. The lipid accumulation product is better than BMI for identifying diabetes: A population-based comparison. Diabetes Care. 2006;29(1):151-3.

Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;3(4):920-22.

Yang RF, Liu XY, Lin Z, Zhang G. Correlation study on waist circumference-triglyceride (WT) index and coronary artery scores in patients with coronary heart disease. Eur Rev Med Pharmacol Sci. 2015;19(1):113-8.

Guo X, Ding Q, Liang M. Evaluation of eight anthropometric indices for identification of metabolic syndrome in adults with diabetes. Diabetes Metab Syndr Obes. 2021;14:1431-43.

Liu B, Liu B, Wu G, Yin F. Relationship between body roundness index and metabolic syndrome in type 2 diabetes. Diabetes Metab Syndr Obes. 2019;12:931-5.

Bakaloudi DR, Chrysoula L, Kotzakioulafi E, Theodoridis X, Chourdakis M. Impact of the level of adherence to Mediterranean diet on the parameters of metabolic syndrome: A systematic review and meta-analysis of observational studies. Nutrients. 2021;13(5):1514.

Xu J, Zhang L, Wu Q, Zhou Y, Jin Z, Li Z, et al. Body roundness index is a superior indicator to associate with the cardio-metabolic risk: Evidence from a cross: Sectional study with 17,000 Eastern-China adults. BMC Cardiovasc Disord. 2021;21(1):97.

Zhang XH, Zhang M, He J, Yan YZ, Ma JL, Wang K, et al. Comparison of anthropometric and atherogenic indices as screening tools of metabolic syndrome in the Kazakh adult population in Xinjiang. Int J Environ Res Public Health. 2016;13(4):428.

Guo SX, Zhang XH, Zhang JY, He J, Yan YZ, Ma JL, et al. Visceral adiposity and anthropometric indicators as screening tools of metabolic syndrome among low income rural adults in Xinjiang. Sci Rep. 2016;6:36091.

Zhang X, Hong F, Liu L, Nie F, Du L, Guan H, et al. Lipid accumulation product is a reliable indicator for identifying metabolic syndrome: The China Multi-Ethnic Cohort (CMEC) Study. QJM. 2022;115(3):140-7.

Li Y, Zheng R, Li S, Cai R, Ni F, Zheng H, et al. Association between four anthropometric indexes and metabolic syndrome in US adults. Front Endocrinol. 2022;13:889785.

Bijari M, Jangjoo S, Emami N, Raji S, Mottaghi M, Moallem R, et al. The accuracy of visceral adiposity index for the screening of metabolic syndrome: A systematic review and meta-analysis. Int J Endocrinol. 2021;6684627.

Ozturk EE, Yildiz H. Evaluation of different anthropometric indices for predicting metabolic syndrome. Eur Rev Med Pharmacol Sci. 2022;26(22):8317-25.

Datta Banik S, Pacheco-Pantoja E, Lugo R, Gomez-de-Regil L, Ake RC, Gonzalez RMM, et al. Evaluation of anthropometric indices and lipid parameters to predict metabolic syndrome among adults in Mexico. Diabetes Metab Syndr Obes. 2021;14: 691-701.

Yilmaz SK, Ozcicek F, Mertoglu C. Comparison of traditional and novel obesity-related indices for identification of metabolic sydrome in adults. Cukurova Med J. 2022;47(1):62-70.

Wang H, Liu A, Zhao T, Gong X, Pang T, Zhou Y, et al. Comparison of anthropometric indices for predicting the risk of metabolic syndrome and its components in Chinese adults: A prospective, longitudinal study. BMJ Open. 2017;7(9):e016062.

Wu Y, Li H, Tao X, Fan Y, Gao Q, Yang J. Optimised anthropometric indices as predictive screening tools for metabolic syndrome in adults: A cross-sectional study. BMJ Open. 2021;11(1):e043952.

Shin KA, Hong SB, Shin KS. Body adiposity index and metabolic syndrome risk factors in Korean adults: A comparison with body mass index and other parameters. Biomed Sci Lett. 2017;23(2):57-63.

Bendall CL, Mayr HL, Opie RS, Bes-Rastrollo M, Itsiopoulos C, Thomas CJ. Central obesity and the Mediterranean diet: A systematic review of intervention trials. Crit Rev Food Sci Nutr. 2018(18);58:3070-84.

Kalan Farmanfarma K, Kaykhaei MA, Adineh HA, Mohammadi M, Dabiri S, Ansari-moghaddam A. Prevalence of metabolic syndrome in Iran: A meta-analysis of 69 studies. Diabetes Metab Syndr. 2019;13(1):792-9.

Krishnamoorthy Y, Rajaa S, Murali S, Rehman T, Sahoo J, Sekhar S. Prevalence of metabolic syndrome among adult population in India: A systematic review and meta-analysis. Plos One. 2020;15(10):e0240971.

Khosravi-Boroujeni H, Sarrafzadegan N, Sadeghi M, Roohafza H, Talaei M, Ng S, et al. Secular trend of metabolic syndrome and its components in a cohort of Iranian adults from 2001 to 2013. Metab Syndr Relat Disord. 2017;15(3):137-44.

Descargas

Publicado

2025-06-18

Cómo citar

Sanlier, N., Yildiz, E., Özyalçın, B., Bengisu Ejder, Z., Irmak, E., & Kocabaş, Şule. (2025). Could eight obesity-related indices be effective in predicting the risk of metabolic syndrome in young and middle-aged adults? A cross-sectional study. Revista De Nutrição, 37. Recuperado a partir de https://seer.sis.puc-campinas.edu.br/nutricao/article/view/16255

Número

Sección

Dietética

Artículos más leídos del mismo autor/a