Homocisteína e risco cardiovascular
Palavras-chave:
Aterosclerose, Doenças cardiovasculares, Hiper-homocisteinemia, Homocisteín, Óxido nítricoResumo
Numerosos estudos epidemiológicos têm demonstrado que a hiper-homocisteinemia é um forte e independente fator de risco para o desenvolvimento da doença vascular. A hiper-homocisteinemia pode ser decorrente da deficiência de enzimas envolvidas no metabolismo desse aminoácido ou de seus cofatores (vitaminas). Várias hipóteses têm sido propostas para explicar o mecanismo celular que envolve a hiper-homocisteinemia e a doença vascular, como o estresse oxidativo. Os fatores de risco convencionais para doenças vasculares, como a aterosclerose, incluem hipercolesterolemia, hipertensão arterial, diabetes mellitus e tabagismo, que respondem por aproximadamente 50% dos casos. Evidências indicam atualmente que a hiper-homocisteinemia ocorre em aproximadamente 5% a 7% da população em geral e que é um importante fator de risco independente para o desenvolvimento da aterosclerose. No Brasil, a doença vascular é responsável por mais de 300 mil mortes por ano e corresponde a 16% dos gastos do Sistema Único de Saúde. Contudo mais de 40% dos pacientes diagnosticados com doença coronária prematura, vascular periférica ou trombose venosa recorrente apresentam hiper-homocisteinemia. Nessa revisão, serão abordadas as condições que conduzem à hiper-homocisteinemia, tais como fatores genéticos e nutricionais, e os mecanismos pelos quais a hiper-homocisteinemia potencializa o desenvolvimento da aterosclerose. O presente trabalho foi desenvolvido por meio de revisão sistemática da literatura nacional e internacional pelo indexador MedLine/PubMed, utilizando os unitermos: homocisteína, cardiovascular, risco, aterosclerose, radicais livres.
Downloads
Referências
Ross. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999; 340(2) 115-26.
Lusis AJ. Atherosclerosis. Nature. 2000; 407(6801): 233-41.
Clarke R, Daly L, Robinson K, et ai. Hyperhomo cysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991; 324:1149-55.
Wilcken DEL, Dudman NPB. Homocystinuria and atherosclerosis. ln: Lusis AJ, Rotter Jl, Sparkes RS, editors. Molecular genetics of coronary artery disease; candidate genes and process in atherosclerosis. Monograms in human genetics. New York: Karger; 1992. p.311.
Gordon T, Garcia-Palmieri MR, Kagan A, Kannel WB, Schiffman J. Differences in coronary heart disease in Framingham, Honolulu and Puerto Rico. J Chronic Dis. 1974; 27(7-8):329-44.
Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann lntern Med. 1979; 90(1):85-91.
Mosher DF. Disorder s of blood coagulation. ln: Wyngaarden JB, Smith LH, Bennet JC, Cecil Murray Rust J, Leiper J, McAlister M, et ai. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine imethylaminohydrolase.
Nat Struct Biol. 2001; 8(8):679-83.
Malinow M. Hyperhomocysteinemia: a common and easily resersible risk factor for occlusive atherosclerosis. Circulation. 1990; 81(6):2004-6
Neves LB, Macedo DM, Lopes AC. Homocisteína. J Bras Patol Med Lab. 2004; 40(5):311-20.
Brasileiro RS. Homocisteína, ácido fálico, vitamina B, em adolescentes obesos de escola pública da cidade de São Paulo: estudo de caso-controle [tese]. São Paulo: Universidade Federal de São Paulo; 2004.
Carson NAJ, Neil DW. Metabolic abnormalities detected in a survey of mentally backward individuais in Northern lreland. Arch Dis Child. 1962; 37:505-13.
McCully, K.S. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969; 56:111-28.
Eikelboom JW, Lonn E, Genest Jr J, Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease: a criticai review of the epidemiologic evidence. Ann lntern Med. 1999; 131(5):363-75.
Perez-de-Arce K, Foncea R, Leighton F. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: modulation by antioxidants. Biochem Biophys Res Commun. 2005; 338(2): 1103-9.
Baydas G, Ozer M, Yasar A, Koz ST, Tuzcu M. Melatonin prevents oxidative stress and inhibits reactive gliosis induced by hyperhomocysteinemia in rats. Biochemistry (Moscou). 2006; 71(Suppl 1):S91-5
Reutens S, Sachdev P Homocysteine in neuropsychiatric disorders of the elderly. lnt J Geriatr Psychiatry. 2002; 17:859-64.
Gauthier GM, Keevil JG, McBride PE. The association of homocysteine and coronary artery disease. Clin Cardiol. 2003; 26(12):563-8.
Venâncio LS, Burini RC, Yoshida WB. Hiper-homocis teinemia na doença arterial periférica. J Vasc Br. 2004; 3(1):31-7.
Eikelboom JW, Lonn E, Genest Jr J, Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease: a criticai review of the epidemiologic evidence. Ann lntern Med. 1999; 131(5):363-75.
Fowler B. Homocysteine: overview of biochemistry, molecular biology, and role in disease processes. Semin Vasc Med. 2005; 5(2):77-86.
Bydlowski SP, Magnanelli AC, Chamone DAF. Hiper Homocisteinemia e doenças vaso-oclusivas. Arq Bras Cardiol. 1998; 71(1):69-76.
Cabezas AM, Rodríguez JEFB. Metabolismo de la homocisteína y su relación con la aterosclerosis. Rev Cubana lnvest Biomed. 1999; 18(3):155-68.
Jaconsen DW. Homocysteine and vitamins in car diovascular disease. Clin Chem 1998; 44(8):1833-43
Frantzen F, Faaren AL, Alfheim 1, Nordhei AK. Enzyme conversion immunoassay for determining total homocysteine in plasma or serum. Clin Chem. 1998; 44(2):311-6.
Ueland PM. Homocysteine species as components of plasma redox thiol status. Clin Chem. 1995; 41(3): 340-2.
Duell PB, Malinow MR. Homocysteinemia and risk of atherosclerosis: a clinicai approach to evaluation and management. Endocrinologisty. 1998; 8:170-27.
Gravina-Taddei CF, Batlouni M, Sarteschi C, Saltar VT, Nívea AC, Salvarini MC, et ai. Hiper-Homocisteinemia como fator de risco para doença aterosclerótica coronariana em idosos. Arq Bras Cardiol. 2005; 85(3):166-73.
Jaconsen DW. Homocysteine and vitamins in car diovascular disease. Clin Chem. 1998; 44(8): 1833-43.
Kraus JP. Biochemistry and molecular genetics of cystathionine beta-synthase. deficiency. Eur J Pediatr. 1998; 157(2):S50-3.
McCully KS, Wilson RB. Homocysteine theory of arteriosclerosis. Atherosclerosis. 1975; 22(2):215-27 _
Kang SS, Zhou J, Wong PWK, Kowalisyn J, Strokosch
G. lntermediate homocystinuria: a thermolabile variant of methylene tetrahydrofolate reductase. Am J Hum Genet. 1988; 43(4):414-21.
Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998; 338(15): 1042-50.
McAndrew PE, Brandt JT, Pearl DK, Prior TW. The incidence of the gene for themolabile methylene tetrahydrofolate reductase in African Americans. Thromb Res. 1996; 83(2):195-8.
Wagner WE, Levine B. Folie acid and neural tube defects. Curr Concepts Nutr. 1993; 8:1-12.
Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, et ai. lncreased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscl Thromb Vasc Biol. 2003; 23(3):418-24.
Eberhardt RT, Forgione MA, Cap A, Leopold JA, Rudd MA, Tolliet M, et ai. Endothelial dysfunction in a murine model of mild hyperhomocyst( e)inemia. J Clin lnvest. 2000; 106(4):483-91.
Dayal S, Bottiglieri T, Arning E, Maeda N, Malinow MR, Sigmund CD, Heistad DO, et ai. Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine b-synthasedeficient mice. Circ Res. 2001; 88(11):1203-9
Kanani PM, Sinkey CA, Browning RL, Allaman M, Knapp HR, Haynes WG. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation. 1999; 100(11):1161-8.
Faraci FM. Hyperhomocysteinemia: a million ways to lose contrai. Arterioscl Thromb Vasc Biol. 2003; 23(3):371-3
Pinto WJ, Areas MA, Reyes FGR. óxido nítrico e o sistema vascular: uma revisão. Acta Cient Biol Saúde. 2003; 5(1):47-61.
McAndrew PE, Brandt JT, Pearl DK, Prior TW. The incidence of the gene for themolabile methylene tetrahydrofolate reductase in African Americans. Thromb Res. 1996; 83(2):195-8.
Lentz, SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005; 3(8): 1646-54.
Dayal S, Brown KL, Weydert CJ, Oberley LW, Arning E, Bottiglieri T, et ai. Deficiency of glutathione peroxidase-1 sensitizes hyperhomocysteinemic mice to endothelial dysfunction. Arterioscl Thromb Vasc Biol. 2002; 22(12):1996-2002.
Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, et ai. lncreased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscl Thromb Vasc Biol. 2003; 23(3):418-24.
Guida-Cardoso SM, Pinto WJ, Ogo HS, Reyes FGR, Areas MA. Dietary fiber reduces lipid peroxidation and mean bloood pressure in hypercholesterolemic hamsters. Alimentaria. 2004; 4:31-34.
Ullrich V, Bachschmid M. Superoxide as a messenger of endothelial function. Biachem Biophys Res Commun. 2000; 278(1):1-8.
Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase: a Ca2+/ calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem. 1998; 273(40): 25804-8.
Patel KB, Stratford MR, Wardman P, Everett S A. Oxidation of tetrahydrobiopterin by biological radicais and scavenging. Free Radie Biol Med. 2002; 32(3):203-11.
Landmesser U, Dikalov 5, Price SR, McCann L, Fukai T, Holland SM , et ai. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin lnvest. 2003; 111(8): 1201-9.