Homocysteine and cardiovascular risk
Keywords:
Atherosclerosis, Cardiovascular disease, Hyperhomocysteinemia, Homocysteine, Nitric oxideAbstract
Numerous epidemiological studies have demonstrated that hyperhomocysteinemia is
a strong and independent risk factor for cardiovascular disease.
Hyperhomocysteinemia can result from a deficiency of the enzymes or vitamin
cofactors required for homocysteine metabolism. Several hypotheses have been
proposed to explain the cellular mechanisms by which hyperhomocysteinemia
promotes cardiovascular disease, including oxidative stress. Conventional risk
factors for cardiovascular disease, including hypercholesterolemia, hypertension,
smoking and diabetes mellitus, account for approximately 50% of all cases.
Evidence now indicates that hyperhomocysteinemia, which occurs in approximately
5 to 7% of the general population, is an important, independent risk factor for
atherosclerosis and thrombotic disease. In Brazil, they are responsible for the
death of 300 thousand people/year and they correspond to 16% of the expenses
of the Unified Healthcare System (SUS). Furthermore, up to 40% of patients
diagnosed with premature coronary artery disease, peripheral vascular disease or
recurrent venous thrombosis have hyperhomocysteinemia. In this review article,
we will summarize the genetic and nutritional factors that induce
hyperhomocysteinemia and further examine the clinical evidence implicating
hyperhomocysteinemia as an independent risk factor for cardiovascular disease.
In addition, potential mechanisms by which homocysteine accelerates
atherosclerosis will be discussed in light of the important findings recently
reported. This study was based on a systematic review of the national and
international literature found in the databases MedLine/PubMed using the key
words: homocysteine, cardiovascular risk, atherosclerosis, free radicals.
Downloads
References
Ross. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999; 340(2) 115-26.
Lusis AJ. Atherosclerosis. Nature. 2000; 407(6801): 233-41.
Clarke R, Daly L, Robinson K, et ai. Hyperhomo cysteinemia: an independent risk factor for vascular disease. N Engl J Med. 1991; 324:1149-55.
Wilcken DEL, Dudman NPB. Homocystinuria and atherosclerosis. ln: Lusis AJ, Rotter Jl, Sparkes RS, editors. Molecular genetics of coronary artery disease; candidate genes and process in atherosclerosis. Monograms in human genetics. New York: Karger; 1992. p.311.
Gordon T, Garcia-Palmieri MR, Kagan A, Kannel WB, Schiffman J. Differences in coronary heart disease in Framingham, Honolulu and Puerto Rico. J Chronic Dis. 1974; 27(7-8):329-44.
Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann lntern Med. 1979; 90(1):85-91.
Mosher DF. Disorder s of blood coagulation. ln: Wyngaarden JB, Smith LH, Bennet JC, Cecil Murray Rust J, Leiper J, McAlister M, et ai. Structural insights into the hydrolysis of cellular nitric oxide synthase inhibitors by dimethylarginine imethylaminohydrolase.
Nat Struct Biol. 2001; 8(8):679-83.
Malinow M. Hyperhomocysteinemia: a common and easily resersible risk factor for occlusive atherosclerosis. Circulation. 1990; 81(6):2004-6
Neves LB, Macedo DM, Lopes AC. Homocisteína. J Bras Patol Med Lab. 2004; 40(5):311-20.
Brasileiro RS. Homocisteína, ácido fálico, vitamina B, em adolescentes obesos de escola pública da cidade de São Paulo: estudo de caso-controle [tese]. São Paulo: Universidade Federal de São Paulo; 2004.
Carson NAJ, Neil DW. Metabolic abnormalities detected in a survey of mentally backward individuais in Northern lreland. Arch Dis Child. 1962; 37:505-13.
McCully, K.S. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol. 1969; 56:111-28.
Eikelboom JW, Lonn E, Genest Jr J, Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease: a criticai review of the epidemiologic evidence. Ann lntern Med. 1999; 131(5):363-75.
Perez-de-Arce K, Foncea R, Leighton F. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: modulation by antioxidants. Biochem Biophys Res Commun. 2005; 338(2): 1103-9.
Baydas G, Ozer M, Yasar A, Koz ST, Tuzcu M. Melatonin prevents oxidative stress and inhibits reactive gliosis induced by hyperhomocysteinemia in rats. Biochemistry (Moscou). 2006; 71(Suppl 1):S91-5
Reutens S, Sachdev P Homocysteine in neuropsychiatric disorders of the elderly. lnt J Geriatr Psychiatry. 2002; 17:859-64.
Gauthier GM, Keevil JG, McBride PE. The association of homocysteine and coronary artery disease. Clin Cardiol. 2003; 26(12):563-8.
Venâncio LS, Burini RC, Yoshida WB. Hiper-homocis teinemia na doença arterial periférica. J Vasc Br. 2004; 3(1):31-7.
Eikelboom JW, Lonn E, Genest Jr J, Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease: a criticai review of the epidemiologic evidence. Ann lntern Med. 1999; 131(5):363-75.
Fowler B. Homocysteine: overview of biochemistry, molecular biology, and role in disease processes. Semin Vasc Med. 2005; 5(2):77-86.
Bydlowski SP, Magnanelli AC, Chamone DAF. Hiper Homocisteinemia e doenças vaso-oclusivas. Arq Bras Cardiol. 1998; 71(1):69-76.
Cabezas AM, Rodríguez JEFB. Metabolismo de la homocisteína y su relación con la aterosclerosis. Rev Cubana lnvest Biomed. 1999; 18(3):155-68.
Jaconsen DW. Homocysteine and vitamins in car diovascular disease. Clin Chem 1998; 44(8):1833-43
Frantzen F, Faaren AL, Alfheim 1, Nordhei AK. Enzyme conversion immunoassay for determining total homocysteine in plasma or serum. Clin Chem. 1998; 44(2):311-6.
Ueland PM. Homocysteine species as components of plasma redox thiol status. Clin Chem. 1995; 41(3): 340-2.
Duell PB, Malinow MR. Homocysteinemia and risk of atherosclerosis: a clinicai approach to evaluation and management. Endocrinologisty. 1998; 8:170-27.
Gravina-Taddei CF, Batlouni M, Sarteschi C, Saltar VT, Nívea AC, Salvarini MC, et ai. Hiper-Homocisteinemia como fator de risco para doença aterosclerótica coronariana em idosos. Arq Bras Cardiol. 2005; 85(3):166-73.
Jaconsen DW. Homocysteine and vitamins in car diovascular disease. Clin Chem. 1998; 44(8): 1833-43.
Kraus JP. Biochemistry and molecular genetics of cystathionine beta-synthase. deficiency. Eur J Pediatr. 1998; 157(2):S50-3.
McCully KS, Wilson RB. Homocysteine theory of arteriosclerosis. Atherosclerosis. 1975; 22(2):215-27 _
Kang SS, Zhou J, Wong PWK, Kowalisyn J, Strokosch
G. lntermediate homocystinuria: a thermolabile variant of methylene tetrahydrofolate reductase. Am J Hum Genet. 1988; 43(4):414-21.
Welch GN, Loscalzo J. Homocysteine and atherothrombosis. N Engl J Med. 1998; 338(15): 1042-50.
McAndrew PE, Brandt JT, Pearl DK, Prior TW. The incidence of the gene for themolabile methylene tetrahydrofolate reductase in African Americans. Thromb Res. 1996; 83(2):195-8.
Wagner WE, Levine B. Folie acid and neural tube defects. Curr Concepts Nutr. 1993; 8:1-12.
Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, et ai. lncreased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscl Thromb Vasc Biol. 2003; 23(3):418-24.
Eberhardt RT, Forgione MA, Cap A, Leopold JA, Rudd MA, Tolliet M, et ai. Endothelial dysfunction in a murine model of mild hyperhomocyst( e)inemia. J Clin lnvest. 2000; 106(4):483-91.
Dayal S, Bottiglieri T, Arning E, Maeda N, Malinow MR, Sigmund CD, Heistad DO, et ai. Endothelial dysfunction and elevation of S-adenosylhomocysteine in cystathionine b-synthasedeficient mice. Circ Res. 2001; 88(11):1203-9
Kanani PM, Sinkey CA, Browning RL, Allaman M, Knapp HR, Haynes WG. Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation. 1999; 100(11):1161-8.
Faraci FM. Hyperhomocysteinemia: a million ways to lose contrai. Arterioscl Thromb Vasc Biol. 2003; 23(3):371-3
Pinto WJ, Areas MA, Reyes FGR. óxido nítrico e o sistema vascular: uma revisão. Acta Cient Biol Saúde. 2003; 5(1):47-61.
McAndrew PE, Brandt JT, Pearl DK, Prior TW. The incidence of the gene for themolabile methylene tetrahydrofolate reductase in African Americans. Thromb Res. 1996; 83(2):195-8.
Lentz, SR. Mechanisms of homocysteine-induced atherothrombosis. J Thromb Haemost. 2005; 3(8): 1646-54.
Dayal S, Brown KL, Weydert CJ, Oberley LW, Arning E, Bottiglieri T, et ai. Deficiency of glutathione peroxidase-1 sensitizes hyperhomocysteinemic mice to endothelial dysfunction. Arterioscl Thromb Vasc Biol. 2002; 22(12):1996-2002.
Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, et ai. lncreased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscl Thromb Vasc Biol. 2003; 23(3):418-24.
Guida-Cardoso SM, Pinto WJ, Ogo HS, Reyes FGR, Areas MA. Dietary fiber reduces lipid peroxidation and mean bloood pressure in hypercholesterolemic hamsters. Alimentaria. 2004; 4:31-34.
Ullrich V, Bachschmid M. Superoxide as a messenger of endothelial function. Biachem Biophys Res Commun. 2000; 278(1):1-8.
Xia Y, Tsai AL, Berka V, Zweier JL. Superoxide generation from endothelial nitric-oxide synthase: a Ca2+/ calmodulin-dependent and tetrahydrobiopterin regulatory process. J Biol Chem. 1998; 273(40): 25804-8.
Patel KB, Stratford MR, Wardman P, Everett S A. Oxidation of tetrahydrobiopterin by biological radicais and scavenging. Free Radie Biol Med. 2002; 32(3):203-11.
Landmesser U, Dikalov 5, Price SR, McCann L, Fukai T, Holland SM , et ai. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin lnvest. 2003; 111(8): 1201-9.