The influence of ultra-processed food consumption in anthropometric and atherogenic indices of adolescents

Autores/as

  • Larisse Monteles NASCIMENTO Universidade Federal do Piauí
  • Nayara Vieira do Nascimento MONTEIRO Universidade Federal do Piauí
  • Thiana Magalhães VILAR Universidade Federal do Piauí
  • Cyntia Regina Lúcio de Sousa IBIAPINA Universidade Federal do Piauí
  • Karoline de Macedo Gonçalves FROTA Universidade Federal do Piauí

Palabras clave:

Adolescence, Cardiovascular risk, Food consumption, Processed foods

Resumen

Objective
To investigate the influence of ultra-processed food consumption on anthropometric and atherogenic indices.
Methods
A cross-sectional study was conducted with 327 adolescents aged 14 to 19 years. Sociodemographic, anthropometric, biochemical, and food consumption data were evaluated. The ratios of atherogenic indices were calculated using the Castelli I (Total Cholesterol/High Density Lipoprotein Cholesterol), Castelli II (Low Density Lipoprotein Cholesterol/High Density Lipoprotein Cholesterol), and estimated Low Density Lipoprotein Cholesterol particle size (Atherogenic Index of Plasma=Triglycerides/High-Density Lipoprotein Cholesterol) indices. Logistic regression was used for the unadjusted and adjusted analysis between ultra-processed foods consumption, anthropometric, and atherogenic indices. The level of significance was 5%.
Results
Most participants were female (59.3%). Girls had a higher consumption of ultra-processed foods (26.6% vs. 20.5%). Of the total number of adolescents, 16.5% were overweight and 65.7% were from public schools. Adolescents with altered values for the Castelli I and II Index, and for the Atherogenic Index of Plasma had significantly higher weights, Waist Circumference, Waist Circumference/ Height and Body Mass Index/ Age values. The adjusted analysis identified a significant association (Odds ratio=2.29; 95% Confidence interval: 1.23-4.28) between the high consumption of ultraprocessed foods and the Castelli II index.
Conclusion
The associations between atherogenic indices and anthropometric indices and the consumption of ultra-processed foods highlight the negative influence of these foods on adolescents’ cardiovascular health.

Citas

Ding W, Cheng H, Yan Y, Zhao X, Chen F, Huang G, et al. 10-Year trends in serum lipid levels and dyslipidemia among children and adolescents from several schools in Beijing, China. J Epidemiol. 2016;26:637-45. https://doi.og/10.2188/jea.JE20140252

Barbalho SM, Oshiiwa M, Fontana LCS, Finalli EFB, Paiva Filho ME, Spada APM. Metabolic syndrome and atherogenic indices in school children: a worrying panorama in Brazil. Diab Met Syndr. 2017;11:S397-S401. https://doi.org/10.1016/j.dsx.2017.03.024

Barbalho SM, Tofano RJ, Bechara MD, Quesada K, Coqueiro DP, Mendes CG. Castelli Index and estimative of LDL-c particle size may still help in the clinical practice? J Cardiovasc Disease Res. 2016;7:86-9. https://doi.org/10.5530/jcdr.2016.2.6

Barbalho SM, Tofano RJ, Oliveira MB, Quesada KR, Barion MR, Akuri MC, et al. HDL-C and non-HDL-C levels are associated with anthropometric and biochemical parameters. J Vasc Bras. 2019;18:e20180109. https://doi.org/10.1590/1677-5449.180109

Gadelha PCFP, Arruda IKG, Queiroz PMA, Maio R, Diniz AS. Consumption of ultraprocessed foods, nutritional status, and dyslipidemia in schoolchildren: a cohort study. Eur J Clin Nutr. 2019;73(8):1194-9. https://doi.org/10.1038/s41430-019-0404-2

Lima LR, Nascimento LM, Gomes KRO, Martins MCC, Rodrigues MTP, Frota KMG. Associação entre o consumo de alimentos ultraprocessados e parâmetros lipídicos em adolescentes. Ciênc Saúde Coletiva. 2020 [2020 Jan 15]. Available from: http://www.cienciaesaudecoletiva.com.br/artigos/associacao-entre-o-consumo-de-alimentos-ultraprocessados-e-parametros-lipidicos-em-adolescentes/17122?id=17122

Monteiro CA, Cannon G, Lawrence M, Costa Louzada ML, Pereira Machado P. Ultra-processed foods, diet quality, and health using the NOVA classification system. Rome: Food and Agriculture Organization; 2019.

Monteiro CA, Cannon G, Moubarac JC, Levy RB, Louzada MLC, Jaime PC. The UN decade of nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018;21(1):5-17. https://doi.org/10.1017/S1368980017000234

Gomes KRO, Miranda CES, Frota KMG, Rodrigues MTP, Mascarenhas MDM, Araújo RSRM, et al. Análise da situação de saúde no ensino médio: metodologia. Rev Epidemiol Contr Infec. 2019;9(1). https://doi.org/10.17058/reci.v9i1.11873

Jelliffe DB, Jelliffe EFP. Anthropometry: major measurements. In: Jelliffe DB, Jelliffe EFP. Community nutritional assessment with special reference to less technically developed countries. 2nd. ed. London: Oxford University Press; 1989.

World Health Organization. WHO child growth standards: Length/height-forage, weight-for-age, weight-forlength, weight-for height and body mass index-for-age: methods and development. Geneva: Organization; 2007.

Callaway CW, Chumlea WC, Bouchard C, Himes JH, Lohman TG, Martin AD, et al. Circunferences. In: Lohman TG, Roche AF, Martorell R, editors. Anthropometric standardization reference manual. Champaign: Human Kinetics; 1988.

Fredriks AM, Van Buuren S, Verloove-Vanhorick MFSP, Wit JM. Are age references for waist circumference, hip circumference and waist-hip ratio in Dutch children useful in clinical practice? Eur J Pediatr. 2005;164:216-22. https://doi.org/10.1007/s00431-004-1586-7

Ashwell M, Hsieh SD. Six reasons why the waist-toheight ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56:303-7. https://doi.org/10.1080/09637480500195066

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499-502. https://doi.org/10.1093/clinchem/18.6.499

Maruyama C, Imamura K, Teramoto T. Assessment of LDL-c particle size by triglyceride/HDL-cholesterol ratio in non-diabetic, healthy subjects without prominent hyperlipidemia. J Atheroscler Thromb. 2003;10:186-91. https://doi.org/10.5551/jat.10.186

Faludi AA, Izar MCO, Saraiva JFK, Chacra APM, Bianco HT, Afiune Neto A, et al. Atualização da Diretriz Brasileira de Dislipidemias e Prevenção da Aterosclerose 2017. Arq Bras Cardiol. 2017;109:1-76.

Adamarczuk-Janczyszyn M, Zdrojowy-Wełna A, Rogala N, Zatonska K, Bednarek-Tupikowska G. Evaluation of selected atherosclerosis risk factors in women with subclinical hypothyroidism treated with L-thyroxine. Adv Clin Exp Med. 2016;25:457-63. https://doi.org/10.17219/acem/38555

Moshfegh AJ, Rhodes DG, Baer DJ, Murayi T, Clemens JC, Rumpler WV. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am J Clin Nutr. 2008;88:324-32. https://doi.org/10.1093/ajcn/88.2.324

Verly-Júnior E, Castro MA, Fisberg RM, Marchioni DML. Precision of usual food intake estimates according to the percentage of individuals with a second dietary measurement. J Acad Nutr Diet. 2012;122:1015-20. https://doi.org/10.1016/j.jand.2012.03.028

Monteiro CA, Cannon G, Levy RB, Moubarac JC, Jaime P, Martins AP, et al. NOVA: the star shines bright. World Nutr. 2016;7:28-38.

Universidade Estadual de Campinas. Tabela brasileira de composição de alimentos TACO. 4a. ed. Campinas: Unicamp; 2011 [cited 2020 Oct 9]. Available from: http://www.unicamp.br/nepa/taco/tabela.php?ativo= tabela

Instituto Brasileiro de Geografia e Estatística. Censo demográfico: resultados gerais da amostra. Rio de Janeiro: Instituto; 2011.

Raper N, Perloff B, Ingwersen L, Steinfeldt L, Anand J. An overview of USDA’s Dietary Intake Data System. J Food Compost Anal. 2004;17:545-55.

Multiple Source Method. Multiple Source Method (MSM) for estimating usual dietary intake from short-term measurement data: user guide. Potsdam: Efcoval; 2011 [cited 2017 Sept 20]. Available from: https://msm.dife.de

Instituto Brasileiro de Geografia e Estatística. Pesquisa de orçamentos familiares 2017-2018 primeiros resultados/IBGE, Coordenação de Trabalho e Rendimento. Rio de Janeiro: Instituto; 2019.

Carneiro CS, Peixoto MRG, Mendonça KL. Excesso de peso e fatores associados em adolescentes de uma capital brasileira. Rev Bras Epidemiol. 2017;20:260-73. https://doi.org/10.1590/1980-5497201700020007

Bloch KV, Klein CH, Szklo M, Kuschnir MCC, Abreu GA, Barufaldi LA, et al. Prevalências de hipertensão arterial e obesidade em adolescentes brasileiros. Rev Saúde Pública. 2016;50:9s. https://doi.org/10.1590/S01518-8787.2016050006685

Enes CC, Camargo CM, Justino MIC. Ultra-processed food consumption and obesity in adolescents. Rev Nutr. 2019;32:e180170. https://doi.org/10.1590/1678-9865201932e180170

Juul F, Martinez-Steele E, Parekh N, Monteiro CA, Chang VW. Ultra-processed food consumption and excesso weight among US adults. Br J Nutr. 2018;120(1):90-100.

Barroso TA, Marins LB, Alves R, Gonçalves ACS, Barroso SG, Rocha GS. Associação entre a obesidade central e a incidência de doenças e fatores de risco cardiovascular. Int J Cardiovasc Sci. 2017;30:416-24. https://doi.org/10.5935/2359-4802.20170073

Corrêa MM, Tomasi E, Thumé E, Oliveira ERA, Facchini LA. Razão cintura-estatura como marcador antropométrico de excesso de peso em idosos brasileiros. Cad Saúde Pública. 2017;33:e00195315. https://doi.org/10.1590/0102-311x00195315

Sapunar J, Aguilar-Farías N, Navarro J, Araneda G, Chandía-Poblete D, Manríquez V, et al. Alta prevalencia de dislipidemias y riesgo aterogénico en una población infanto-juvenil. Rev Med Chile. 2018;146:1112-22. https://doi.org/10.4067/S0034-98872018001001112

Feoli AMP, Ribeiro ECT, Piovesan CH, Macagnan FE, Oliveira M, Gustavo AS. Melhora do estilo de vida reduz o Índice de Castelli 1 em indivíduos com Síndrome Metabólica. Rev Saúde Pesquisa. 2018;11:467-74. https://doi.org/10.17765/2176-9206.2018v11n3p467-474

Rauber F, Campagnolo P, Hoffman DJ, Vitolo MR. Consumption of ultra-processed food products and its effects on children’s lipid profiles: a longitudinal study. Nutr Metab Cardiovasc. 2015;25:116-22. https://doi.org/10.1016/j.numecd.2014.08.001

Rocha NP, Milagresa LC, Longo GZ, Ribeiro AQ, Novaes JF. Association between dietary pattern and cardiometabolic risk in children and adolescents: a systematic review. J Pediatr. 2017;93:214-22. https://doi.org/10.1016/j.jped.2017.01.002

Scaglioni S, De Cosmi V, Ciappolino V, Parazzini F, Brambilla P, Agostoni C. Factors influencing children’s eating behaviours. Nutrients. 2018;10:706. https://doi.org/10.3390/nu10060706

Beserra JB, Soares NIS, Marreiros CS, Carvalho CMRG, Martins MCC, Freitas BJSA, et al. Crianças e adolescentes que consomem alimentos ultraprocessados possuem pior perfil lipídico? Uma revisão sistemática. Ciênc Saúde Coletiva. 2020;25:4979-89. https://doi.org/10.1590/1413-812320202512.29542018

Descargas

Publicado

2022-07-05

Cómo citar

Monteles NASCIMENTO, L. ., Vieira do Nascimento MONTEIRO, N. ., Magalhães VILAR, T. ., Lúcio de Sousa IBIAPINA, C. R. ., & de Macedo Gonçalves FROTA, K. . (2022). The influence of ultra-processed food consumption in anthropometric and atherogenic indices of adolescents. Revista De Nutrição, 34, 1–13. Recuperado a partir de https://seer.sis.puc-campinas.edu.br/nutricao/article/view/6171

Número

Sección

ARTIGOS ORIGINAIS