Aggregation of unhealthy food markers in High Schools

Autores/as

Palabras clave:

Adolescent, Eating habits, Life style, Risk factors

Resumen

Objective
To estimate the isolated and aggregated prevalence of excessive consumption of salty, sweet and soft drinks, markers of unhealthy eating, and identify association with sociodemographic and lifestyle factors among schoolchildren.
Methods
Random sample, proportional to the conglomerates (classes). A total of 1,170 high school students aged 14 to 20 years enrolled in public schools in Jequié, Bahia in 2015 were included. Sociodemographic variables (gender, age group, family income and education) and lifestyle (consumption of fruits and vegetables, alcohol and tobacco consumption, screen time and insufficient levels of physical activity) were assessed. SPSS 11.5 (95%CI) was used to perform the chi-square test and Poisson aggregation.
Results
We found a greater consumption of sweets among girls, 27.9% (p<0.01) and inadequate consumption of vegetables in boys 66.3% (p<0.00). The aggregation of the three unhealthy eating markers yielded an exposure of 7.88 (95%CI; 7.87-7.90) for boys and 4.91 (95%CI; 4.87-4.95) for girls. The exposure is higher for boys who watch TV ≥02 hours/day (PR: 1.98; 95%CI: 1.01-3.9; p<0.05) and girls (PR: 3.01; 95%CI: 1.64-5.52; p<0.00), besides computer/videogame use (PR: 2.47; 95%CI: 1.4-4.35; p<0.00).
Conclusion
It was observed that for both genders, watching TV or using the computer/video game for more than two hours increases the chance of consumption of unhealthy food markers.

Citas

Silva EA, Moreira NF, Muraro AP, Souza AP, Ferreira MG, Rodrigues PR. Simultaneidade de comportamentos de risco para saúde e fatores associados na população brasileira: Dados da Pesquisa Nacional de Saúde – 2013. Cad Saúde Colet. 2022;30(2):297-307. https://doi.org/10.1590/1414-462x202230020499

Silva KS, Lopes AD, Hoefelmann LP, Cabral LG, De Bem MF, Barros MV, et al. Projeto COMPAC (comportamentos dos adolescentes catarinenses): Aspectos metodológicos, operacionais e éticos. Rev Bras Cineantropom Desempenho Hum. 2013;15(1):1-15. https://doi.org/10.5007/1980-0037.2013v15n1p1

Buckland G, Northstone K, Emmett PM, Taylor CM. The inflammatory potential of the diet in childhood is associated with cardiometabolic risk in adolescence/young adulthood in the ALSPAC birth cohort. Eur J Nutr. 2022;61(7):3471-86. https://doi.org/10.1007/s00394-022-02860-9

Tana CM, Amâncio NFG. Consequências do tempo de tela na vida de crianças e adolescentes. Res Societ Develop. 2023;12(1):e11212139423. Available from: https://doi.org/10.33448/rsd-v12i1.39423

Yamasaki VOG, Porfírio E. Imagem corporal, nível de atividade física e consumo alimentar de escolares de 13 a 17 anos: Revisão de literatura com base na Pesquisa Nacional de Saúde do Escolar (PeNSE 2012, 2015). J Health Sci Inst. 2022;40(2):113-8.

Bortolotto CC, Meller FD, Otte J, Rombaldi AJ, Azevedo MR, Madruga SW. Consumo de alimentos não saudáveis entre adolescentes brasileiros e fatores associados. TEMPUS. 2018;11(4):77-89. https://doi.org/10.18569/tempus.v11i4.2445

Rodrigues RDRM, Souza BDSN, Cunha DB, Estima CDCP, Sichieri R, Yokoo EM. Associação entre tempo de exposição à tela e variação de ingestão alimentar entre adolescentes em idade escolar de Niterói/Rio de Janeiro, Brasil. Cad Saúde Colet. 2020;28(1):24-33. https://doi.org/10.1590/1414-462x202028010074

Leite RS, Corona LF, Habitante CA. Composição corporal, fatores familiares, nível de atividade física e tempo de tela em escolares de 6 a 15 anos com sobrepeso e obesidade. CPAQV. 2022;14(1):1. https://doi.org/10.36692/v14n1-14

Aguiar GR, Silva ND, Medeiros CC, Palmeira PD, Vianna RP, Carvalho DF. Impacto do videogame ativo sobre o consumo de alimentos não saudáveis entre adolescentes: Estudo de intervenção controlado. Res Soc Dev. 2020;9(10):e869108299. https://doi.org/10.33448/rsd-v9i10.8299

Ricciuto L, Fulgoni VL, Gaine PC, Scott MO, DiFrancesco L. Trends in added sugars intake and sources among US children, adolescents, and teens using NHANES 2001–2018. J Nutr. 2021;152(2):568-78. https://doi.org/10.1093/jn/nxab395

Luiz RR, Magnanini MMF. A lógica na determinação do tamanho da amostra em investigações epidemiológicas. Cad Saúde Colet. 2000;8(2):9-28.

Brasil. Guia de Atividade física para a população brasileira. Brasília: Ministério da Saúde; 2021.

Lawlor DA, O’Callaghan MJ, Mamun AA, Williams GM, Bor W, Najman JM. Socioeconomic position, cognitive function, and clustering of cardiovascular risk factors in adolescence: Findings from the mater university study of pregnancy and its outcomes. Psychosom Med. 2005;67(6):862-8. https://doi.org/10.1097/01.psy.0000188576.54698.36

Reichenheim ME, Coutinho ES. Measures and models for causal inference in cross-sectional studies: Arguments for the appropriateness of the prevalence odds ratio and related logistic regression. BMC Med Res Methodol. 2010;10(1):66. https://doi.org/10.1186/1471-2288-10-66

Jia G, Wu CC, Su CH. Dietary inflammatory index and metabolic syndrome in US children and adolescents: Evidence from NHANES 2001–2018. Nutr Metab. 2022;19(1):39. https://doi.org/10.1186/s12986-022-00673-5

Melo AS, Neves FS, Netto MP, Oliveira RM, Fontes VS, Cândido AP. Consumption of differently processed food by public school adolescents. Rev Nutr. 2022;35:e210078. https://doi.org/10.1590/1678-9865202235e210078

Maia EG, Silva LE, Santos MA, Barufaldi LA, Silva SU, Claro RM. Padrões alimentares, características sociodemográficas e comportamentais entre adolescentes brasileiros. Rev Bras Epidemiol. 2018;21(1):E180009. supl.1. https://doi.org/10.1590/1980-549720180009.supl.1

Rego GA, Chaud DMA. Determinantes do comportamento alimentar na adolescência. Vita et Sanitas. 2022;16(1):95-111.

Jesus GM, Araujo RH, Dias LA, Barros AK, Araujo LD, Assis MA. Missing class increases the daily frequency of screen use among schoolchildren. Rev Bras Ativ Fís Saúde. 2022; 27:e0256. https://doi.org/10.12820/rbafs.27e0256

Monteiro LZ, Varela AR, Souza PD, Maniçoba AC, Braga Júnior F. Hábitos alimentares, atividade física e comportamento sedentário entre escolares brasileiros: Pesquisa Nacional de Saúde do Escolar, 2015. Rev Bras Epidemiol. 2020;23:E200034. https://doi.org/10.1590/1980-549720200034

De Sousa LP, Franzoi MA, De Morais RD. Influence of social media on the eating behavior of adolescents. Braz J Develop. 2022;8(6):43489-502. https://doi.org/10.34117/bjdv8n6-065

Assunção TD, Barroso RD, Fideles IC, Aquino R. Necessidades energéticas e consumo alimentar de adolescentes do interior baiano. Res Soc Dev. 2021;10(14):e373101422275. https://doi.org/10.33448/rsdv10i14.22275

Alcântara CM, Silva ANS, Pinheiro PNC, Queiroz MVO. Tecnologias digitais para promoção de hábitos saudáveis dos adolescentes. Rev Bras Enferm. 2019;72(2):513-20. https://doi.org/10.1590/0034-7167-2018-0352

Oh C, Carducci B, Vaivada T, Bhutta ZA. Digital interventions for universal health promotion in children and adolescents: A systematic review. Pediatrics. 2022;149(6):e2021053852H. https://doi.org/10.1542/peds.2021-053852h

Descargas

Publicado

2025-06-10

Cómo citar

Souza, A. A., Munaro, S. de A. P., & Munaro, H. L. R. (2025). Aggregation of unhealthy food markers in High Schools. Revista De Nutrição, 37. Recuperado a partir de https://seer.sis.puc-campinas.edu.br/nutricao/article/view/16158

Número

Sección

Saúde Coletiva