In vitro and in vivo evaluation of iron bioavailability from microencapsulated ferrous sulfate

Authors

  • Maria Lucia COCATO Universidade de São Paulo
  • Maria Inês RÉ Instituto de Pesquisas Tecnológicas do Estado de São Paulo
  • Messias Alves TRINDADE NETO Universidade de São Paulo
  • Helena Pontes CHIEBAO Universidade de São Paulo
  • Célia COLLI Universidade de São Paulo

Keywords:

biological availability, drug compounding, iron

Abstract

Objective
To evaluate, by in vitro and in vivo methods, the bioavailability of a new microencapsulated ferrous sulfate (Ferlim) developed for food fortification, and compare it with electrolytic iron (Fe0).

Methods
In vitro dialyzability assessment used reconstituted milk powder as matrix. In vivo assessment using the hemoglobin regeneration method in anemic piglets lasted for 13 days and the animals (n=23) were grouped according to the product of weight (kg) x hemoglobin (g/dL). FeSO4.7H2O was used as control.

Results
The percentages of dialyzed iron were 2.2 (standard deviation=0.1)%, 3.4 (standard deviation=0.1)% and 3.6 (standard deviation=0.0)% for FeSO4.7H2O, Ferlim and Fe0 respectively (p<0.05). Iron absorption was 16.0 (standard deviation=3.1)% for the control group, 15.1 (standard deviation=3.8)% for the Ferlim group and 12.8 (standard deviation=4.3)% for the Fe0 group; the differences were not significant (p>0.05). The absorption percentages of the relative biological value of FeSO4.7H2O were 94.2 (standard deviation=23.8)% for the Ferlim group and 79.7 (standard deviation=26.6)% for the Fe0 group; the differences were not significant (p>0.05). In numerical values (p>0.05), the Fe0 group presented the lowest mean relative biological value absorption (%) and concentration of total iron, heme iron and non-heme iron in the liver.

Conclusion
Microencapsulation of ferrous sulfate with alginate retains its bioavailability therefore it is a good alternative for the fortification of solid mixtures. 

References

Brasil. Agência Nacional de Vigilância Sanitária. Resolução RDC n.344, de 13 de dezembro de 2002. Legislação Específica por Área de Assunto. Regulamentos técnicos por assunto: F. Farinha de trigo e/ou milho fortificadas com ferro [acesso em 22 out 2003]. Disponível em: http://e-legis. bvs.br/leisref/public/showAct.php?id=1679

Salzano AC, Torres MAA, Batista Filho M, Romani SAM. Anemia em crianças de dois serviços de saúde de Recife, PE (Brasil). Rev Saúde Pública. 1985; 19(6):499-507.

Cardoso MA, Ferreira MV, Camargo LMA, Szarfarc S. Anemia em população de área endêmica de malária, Rondônia (Brasil). Rev Saúde Pública. 1992; 26(3):161-6.

Soares NT, Guimarães ARP, Sampaio HAC, Almeida PC, Coelho RR. Estado nutricional de lactentes em áreas periféricas de Fortaleza. Rev Nutr. 2000; 13(2):99-106.

Alberico APM, Veiga GV, Baiao MR, Santos MMAS, Souza SB, Szarfarc SC. Iron deficiency anaemia in infants attended at municipal primary health care centres in Rio de Janeiro - Brazil. Nutr Food Sci. 2003; 33(2):50-5.

Björn-Rasmussen E, Hallberg L, Rossander L. Absorption of fortification iron. Br J Nutr. 1977; 37(3):375-88.

Cook JD, Reusser ME. Iron fortification: an update. Am J Clin Nutr. 1983; 38(4):648-59.

Yip R. Prevention and control of iron deficiency: policy and strategy issues. J Nutr. 2002; 132: 802S-5S.

Waddell J. Bioavailability of iron sources. Food Prod Dev. 1974; 8(2):80-6.

Forbes AL, Adams CE, Arnaud MJ, Chichester CO, Cook JD, Harrison BN, et al. Comparison of in vitro, animal, and clinical determinations of iron bioavailability: International Nutritional. Anemia Consultative Group Task Force report on iron bioavailability. Am J Clin Nutr. 1989; 49(2): 225-38.

Jackson LS, Lee K. Microencapsulated iron for food fortification. J Food Sci. 1991; 4:1047-51.

Lee K, Clydesdale FM. Iron sources in food fortification and their changes due to food processing. Crit Rev Food Sci Nutr. 1978; 11(2): 117-53.

Boccio JR, Zubillaga MB, Caro RA, Gotelli CA, Gotelli MJ, Weill R. A new procedure to fortify fluid milk and dairy products with high bioavailable ferrous sulfate. Nutr Rev. 1997; 55(6):240-6.

Gotelli CA, Gotelli MJ, Boccio JR, Zubillaga MB, Caro RA, Garcia Del Rio H, et al. Bioavailability of microencapsulated ferrous sulfate in fluid milk studies in human beings. Acta Physiol Pharmacol Ther Latinoam. 1996; 46(4):239-45.

Zubillaga MB, Caro RA, Boccio JR, Gotelli CA, Gotelli MJ, Weill R. New procedure to fortify fluid milk with iron: metabolic and biochemical study in rats. Nutr Res. 1996; 16(1):131-7.

Boccio JR, Zubillaga MB, Caro RA, Gotelli CA, Gotelli MJ, Weill R. Bioavailability and stability of microencapsulated ferrous sulfate in fluid milk: studies in mice. J Nutr Sci Vitaminol. 1996; 42(3): 233-9.

Lysionek AE, Zubillaga MB, Salgueiro MJ, Pineiro A, Caro RA, Weill, et al. Bioavailability of microencapsulated ferrous sulfate in powdered milk produced from fortified fluid milk: a prophylactic study in rats. Nutrition. 2002; 18(3): 279-81.

Ré MI, Fernandes FC. Produto à base de sulfato ferroso para fortificação de alimentos desidratados e método de preparação. Brasil patente. PI 005819. 24 nov 2003.

Ré MI, Fernandes FC. A ferrous sulphate-based product to be used for fortifying dehydrated food stuff and method for the preparation thereof’. Brasil patente. PCT/BR2004/000231. 23 nov 2004.

Ré MI, Fernandes FC. Produto à base de sulfato ferroso para fortificação de alimentos desidratados e método de preparação. Brasil patente. PI 0305871-9.

Ré MI. Desenvolvimento de micropartículas de sulfato ferroso modificadas para uso em estudo clínico de combate à anemia ferropriva em pré- -escolares. Relatório técnico. São Paulo: Instituto de Pesquisas Tecnológicas da Universidade de São Paulo. Fapesp; 2003. Processo n.67459.

Perks SM, Miller DD. Adding ascorbic acid to ironfortified cow’s milk does not enhance iron bioavailability to piglets. Nutr Res. 1996; 16: 969-75.

Miller ER, Ullrey DE. The pig as a model for human nutrition. Ann Rev Nutr. 1987; 7:361-82.

Moughan PJ, Birtles MJ, Cranwell PD, Smith WC, Pedraza M. The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World Rev Nutr Diet. 1992; 67:40-113.

National Research Council. In: Nutrient requirements of swine: subcommittee on swine nutrition. 10th ed. Washington (DC): National Academy Press; 1998.

Miller J. Assessment of dietary iron availability by rat hemoglobin repletion assay. Nutr Rep Int. 1982; 26(6):993-1005.

South PK, Lei X, Miller DD. Meat enhances nonheme iron absorption in pigs. Nutr Res. 2000; 20(12):1749-59.

Miller DD, Schricker RR, Rasmussen RR, Van Campen D. An in vitro method for estimation of iron availability from meals. Am J Clin Nutr. 1981; 34:2248-56.

Association Official Analytical Chemists. Official methods of analysis. 13th ed. Arlington (VA): AOAC; 1985. p.505.

Hornsey HC. Estimation of the nitric oxid-haem pigments. J Sci Food Agric. 1956; 7:534-40.

Monsen ER, Hallberg L, Layrisse M, Hegsted M, Cook JD, Mertz W, et al. Estimation of available dietary iron. Am J Clin Nutr. 1978; 31:134-141.

Hazell T. Mineral in foods: dietary sources, chemical forms, interaction, biovailability. World Rev Nutr Diet. 1992; 67:40-113.

Published

2023-09-14

How to Cite

COCATO, M. L. ., RÉ, M. I. ., Alves TRINDADE NETO, M. ., Pontes CHIEBAO, H., & COLLI, . C. (2023). In vitro and in vivo evaluation of iron bioavailability from microencapsulated ferrous sulfate. Brazilian Journal of Nutrition, 20(3). Retrieved from https://seer.sis.puc-campinas.edu.br/nutricao/article/view/9671

Issue

Section

ORIGINAL ARTICLE