Function of nutraceuticals in the intestinal modulation of animals with non-alcoholic steatohepatitis (NASH): a systematic review

a systematic review

Autores/as

DOI:

https://doi.org/10.24220/2318-0897v30e2021a4824

Palabras clave:

Dysbiosis. Microbiota. Non-alcoholic Fatty Liver Disease. Nutriceutical. Nutritional Sciences.

Resumen

Recent studies have observed the role of intestinal microbiota in the pathogenesis of non-alcoholic steatosis (NASH) and described the relationship between alterations in microbiota (called dysbiosis) with inadequate dietary practices and obesity. Through systematic synthesis this review aims to establish which nutraceuticals can be used in the intestinal modulation of animal models with NASH. Based on the search of MeSH and Decs descriptors, searches were performed on the PubMed, Web of Science and LILACS database using the keywords "Microbiota"; "Gastrointestinal Microbioma"; "Disbiosis"; "Bacterial Translocation"; "Non-alcoholic fatty liver disease"; "NAFLD", "Nutraceuticals" and "Dietetic Supplements". After the methodological screening, seven studies were included. A total of 246 male Sprangue Dawley rats with a mean age of four to eight weeks were evaluated. More than half of the studies (57.1%) used probiotics as nutraceuticals, 28.7% of the researches used tomato products and 14.3% used symbiotics. The results suggest positive effects of probiotics, tomato products and symbiotics in the composition and functions of microorganisms resident in the intestines of animals with NASH, micro according to different mechanisms. Modulation of intestinal microbiota may contribute to minimize the development and progression of NASH.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Pâmela Gracielle Fonseca, Instituto Federal de Ciência e Tecnologia do Sudeste de Minas Gerais

Instituto Federal de Ciência e Tecnologia do Sudeste de Minas Gerais, Campus Saúde. R. Monsenhor José Augusto, n. 204, São José,
36205-018, Barbacena, Minas Gerais, Brasil. Correspondence to: Pâmela Gracielle da Fonseca. E-mail: <pamelafonsecanutri@gmail.com>.

Fabiana de Faria Ghetti, Hospital Universitário de Juiz de Fora

Hospital Universitário de Juiz de Fora. Juiz de Fora, Minas Gerais, Brasil.

Sônia Maria de Figueiredo, Universidade Federal de Ouro Preto

Universidade Federal de Ouro Preto, Escola de Nutrição, Programa de Pós-Graduação em Saúde e Nutrição.

Nathália Sernizon Guimarães, Universidade Federal de Ouro Preto

Universidade Federal de Ouro Preto, Escola de Nutrição, Programa de Pós-Graduação em Saúde e Nutrição.

Citas

Liu W, Baker RD, Bhatia T, Zhu L, Baker SS. Pathogenesis of nonalcoholic steatohepatitis. Cell Mol Life Sci. 2016;73(10):1969-87. https://doi.org/10.1007/s00018-016-2161-x

Duarte SMB, Stefano JT, Oliveira CP. Microbiota and nonalcoholic fatty liver disease/nonalcoholic steatohepatitis (NAFLD/NASH). Ann Hepatol. 2019;18(3):416-21. https://doi.org/10.1016/j.aohep.2019.04.006

Aronson JK. Defining ‘nutraceuticals’: neither nutritious nor pharmaceutical. Br J Clin Pharmacol. 2017;83(1):8-19. https://doi.org/10.1111/bcp.12935

Faria Ghetti F, Oliveira DG, Oliveira JM, Castro Ferreira LEVV, Cesar DE, Moreira APB. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr. 2018;57(3):861-76. https://doi.org/10.1007/ s00394-017-1524-x

Moher D, Liberati A, Tetzlaff J, Altman DG, The Primas Group, et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Plos Med. 2009;6(7). https://doi.org/10.1371/journal.pmed.1000097

Hooijmans CR, Rovers MM, De Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. Bmc Med Res Methodol. 2014;14(1):1-9. https://doi.org/10.1186/1471-2288-14-43

Pelissari FM, Rona MSS, Matioli G. O licopeno e suas contribuições na prevenção de doenças. Arq do Mudi. 12(1):5-11.

Li CC, Liu C, Fu M, Hu KQ, Aizawa K, Takahashi S, et al. Tomato powder inhibits hepatic steatosis and inflammation potentially through restoring SIRT1 activity and adiponectin function independent of carotenoid cleavage enzymes in mice. Molr Nutr Food Res. 2018;32:1-51. https://doi.org/10.1002/mnfr.201700738

García-Alonso FJ, González-Barrio R, Martín-Pozuelo G, Hidalgo N, Navarro-González I, Masuero D, et al. A study of the prebiotic-like effects of tomato juice consumption in rats with diet-induced non-alcoholic fatty liver disease (NAFLD). Food Funct. 2017;8(10):3542-52. https://doi.org/10.1039/c7fo00393e

Brun P, Castagliuolo I, Di Leo V, Buda A, Pinzani M, Palù G, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292(2):518-25. https://doi.org/10.1152/ajpgi.00024.2006

Liu HT, Cheng SB, Huang YC, Huang YT, Lin PT. Coenzyme Q10 and oxidative stress: Inflammation status in hepatocellular carcinoma patients after surgery. Nutrients. 2017;9(1). https://doi.org/10.3390/nu9010029

Zhou Y, Zheng T, Chen H, Li Y, Huang H, Chen W, et al. Microbial intervention as a novel target in treatment of non-alcoholic fatty liver disease progression. Cell Physiol Biochem. 2018;51(5):2123-35. https://doi.org/10.1159/000495830

Xue L, He J, Gao N, Lu X, Li M, Wu X, et al. Probiotics may delay the progression of nonalcoholic fatty liver disease by restoring the gut microbiota structure and improving intestinal endotoxemia. Sci Rep. 2017;7:1-13. https://doi. org/10.1038/srep45176

Chen YT, Lin YC, Lin JS, Yang NS, Chen MJ. Sugary kefir strain lactobacillus mali APS1 ameliorated hepatic steatosis by regulation of SIRT-1/Nrf-2 and gut microbiota in rats. Mol Nutr Food Res. 2018;62(8):1-24. https://doi.org/10.1002/ mnfr.201700903

Kim B, Park KY, Ji Y, Park S, Holzapfel W, Hyun CK. Protective effects of lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice. Biochem Biophys Res Commun. 2016;473(2):530-6. https://doi.org/10.1016/j. bbrc.2016.03.107

Ramakrishna BS. Probiotic-induced changes in the intestinal epithelium: implications in gastrointestinal disease. Trop Gastroenterol. 2009;30(2):76-85.

Saulnier DMA, Gibson GR, Kolida S. In vitro effects of selected synbiotics on the human faecal microbiota composition. FEMS Microbiol Ecol. 2008;66(3):516-27. https://doi.org/10.1111/j.1574-6941.2008.00561.x

Rivero-Gutiérrez B, Gámez-Belmonte R, Suárez MD, Lavín JL, Aransay AM, Olivares M, et al. A synbiotic composed of Lactobacillus fermentum CECT5716 and FOS prevents the development of fatty acid liver and glycemic alterations in rats fed a high fructose diet associated with changes in the microbiota. Mol Nutr Food Res. 2017;61(8):1-23. https:// doi.org/10.1002/mnfr.201600622

Delzenne NM, Kok NN. Biochemical basis of oligofructose-induced hypolipidemia in animal models. J Nutr. 1999;129(7Suppl):1467S-70S. https://doi.org/10.1093/jn/129.7.1467S

Walker AW, Duncan SH, Leitch ECM, Child MW, Flint HJ. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol. 2005;71(7):3692-700. https://doi.org/10.1128/aem.71.7.3692-3700.2005

Publicado

2021-12-16

Cómo citar

Fonseca, P. G., Ghetti, F. de F., de Figueiredo, S. M., & Guimarães, N. S. (2021). Function of nutraceuticals in the intestinal modulation of animals with non-alcoholic steatohepatitis (NASH): a systematic review: a systematic review. Revista De Ciências Médicas, 30, 8. https://doi.org/10.24220/2318-0897v30e2021a4824