Stem cells and tíssue engíneeríng: applícatíon's perspectíves ín dentístry

Authors

  • Airton Vieira Leite Segundo
  • Belmiro Cavalcanti do Egito Vasconcelos

Keywords:

Stern cells, Dentistry, Bane morphogenetic proteins

Abstract

Stern cells, also known as font cel/s rnay be defined as low differentiation grade cel/s that have the ability of self-reproduction, as we/1 as generate differentiated cells of specialized tissue types. Cellular therapy has been suggested, through the transplant of progenitor cells in hurnans for the treatrnent of degenerative diseases, deve!oprnent alterations and tissue regeneration. ln dentistry, it is expected new alternatives for the regeneration of the cornplex dentin-pulp, periodontal tissue, bane and ternporornandibular joint regeneration. The airn of the present report is to describe future perspectives in tissue engineering using stern cells and its applicability in the current stage of dentistry.

Downloads

Download data is not yet available.

References

Freed CR. Will embryonic stem cells be a useful so rce of dopamine neurons for transplant into patients with Parkinson's disease? Proc Natl Acad Sei USA. 2002; 99(4):1755-7.

Thesleff 1, Tummers M. Stern cells and tissue engineering: prospects for regenerating tissues in dental practice. Med Princ Pract. 2003; 12(Suppl 1):43-50.

Nakashima M, Reddi AH. The application of bane morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003; 21(9):1025-32.

Nakashima M. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Reviews. 2005; 16(3):369-76.

Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev. 2003; 13(5):543-50.

Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004; 116(5):639-48

Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et ai. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sei USA. 2003; 100(10):5807-12.

Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotech. 1998; 16(3):247-52

Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997; 88(3):287-98

O. Junqueira LC, Carneiro J. Biologia celular e molecular 7a. ed. Rio de Janeiro: Guanabara Koogan; 2000. p.227.

Thomson JA, ltskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et ai. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391):1145-7.

Weissman IL. Stern cells: units of development, units of regeneration and units in evolution. Cell. 2000; 100(1):157-68.

Fuchs E, Segre JA. Stern cells: a new lease on life. Cell. 2000; 100(1):143-55.

Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000; 287(5457):1427-30.

Spradling A, Drummond-Barbosa D, Kai T. Stern cells find their niches. Nature. 2001; 414(6859):98-104

Bjornson C R, Rietze RL, Reynolds, BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999; 283(5401):534-7

Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat Med. 2000; 7(4):393- 5.

Camargo FD, Chambres SM, Goodell MA. Stern cells plasticity: from transdifferentiation to macrophage fusion. Cell Prolif. 2004; 37(1):55-65.

Gronthos S, Mankani M, Brahim J, Rokey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sei USA. 2000; 97(25): 13625-30.

Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et ai. Stern cell properties of human dental pulp stem cells. J Dent Res. 2002; 81(8):531-5.

Nakashima M, Nagasawa H, Yamada Y, Reddi AH. Regulatory role of transforming growth factor- , bone morphogenetic protein-2 and protein 4 on gene expression of extracellular matrix protein and differentiation of dental pulp cells. Dev Biol. 1994; 162(1):18-28.

Tziafas D, Smith AJ, Lesot H. Designing newtreatment strategies in vital pulp therapy. J Dent. 2000; 28(2):77- 92.

Reddi AH. lnterplay between bone morphogenetic proteins and cognate binding protein in bone and cartilage development: noggin, chordin and DNA. Arthritis Res. 2001; 3(1):1-5.

Reddi AH. Bone matrix in the solid state: geometric influence on differentiation of fibroblasts. Adv Biol Med Phys. 1974; 15(0):1-18

Reddi AH, Huggins CB. Cyclic electrochemical inactivation and restoration of competence of bone matrix to transform fibroblasts. Proc Natl Acad Sei USA. 1974; 71(5):1648-52

Sampath TK, Reddi AH. lmportance of geometry of the extracellular matrix in endochondral bone differentiation. J Cell Biol. 1984; 98(6):2192-7.

Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004; 32(1):148-59.

Urist MR. Bone: formation by autoindution. Science. 1965; 150(698):893-9.

Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et ai. Novel regulators of bone formation: molecular clones and activities. Science. 1998; 242:1528-34.

Talwar R, Di Silvo L, Hughes FJ, King GN. Effects of carrier release kinetics on bone morphogenetic protein-2-induced periodontal regeneration in vivo. J Clin Periodontol. 2001; 28(4):340-7.

Ripamonti U, Van Den Heever B, Sampath TK, Tucker MM, Rueger DC, Reddi AH. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7). Growth factors. 1996; 13(3-4) 273-89.

Nakashima M. lnduction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 e -4. J Dent Res. 1994; 73(9):1515-22.

Bianco P, Robey PG. Stern cell in tissue engineering. Nature. 2001; 414(6859): 118-21

lohara K, Nakashima M, lto M, lshikawa M, Nakashima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res. 2004; 83(8):590-5.

Polson AM, Proye MP. Fibrin linkage: a precursor for a new attachment. J Periodontol. 1983; 54(3):141-7.

Gottlow J, Nyman S, Lindhe J, Karring T, Wennstrom J. New attachment formation in the human periodontium by guided tissue regeneration. Case report. J Clin Periodontol. 1986; 13(6):604-16

Ripamonti U, Heliotis M, Rueger DC, Sampath TK. lnduction of cementogenesis by recombinant human osteogenic protein-1 (hOP-1/BMP-7) in the baboon. Arch Oral Biol. 1996; 41(1):121-6

Ripamonti U, Duneas N. Tissue morphogenesis and regeneration by bone morphogenetic proteins. Plast Reconstr Surg. 1998; 101(1):227-39.

Ripamonti U, Reddi AH. Tissue engineering, morphogenesis and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med. 1997; 8(2):154-63.

Sun Y, Ma G, Li D. Repair of large cranial defect using allogeneic cranial bone and bone morphogenetic protein. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi. 1995; 11(1):8-9.

Boyne PJ. Application of bone morphogenetic proteins in the treatment of clinicai oral and maxillofacial osseous defect. J Bone Joint Surg Am. 2001; 83(Suppl 1):146-50.

Cook SD, Salkeld SL, Rueger DC. Evaluation of recombinant human osteogenic protein-1 (rhOP-1) placed with dental implants in fresh extraction sites. J Oral Implanto!. 1995; 21(4):281-9

Sykaras N, Triplett RG, Nunn ME, lacopino AM, Opperman LA. Effects of recombinant human bone morphogenetic protein-2 on bone regeneration and osteointegration of dental implants. Clin Oral lmplants Res. 2001; 12(4):339-49

Mao JJ. Stem-cell-driven regeneration of synovial joints. Biol Cell. 2005; 97(5):289-301.

Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stern cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003; 48(12):3464-74.

Lee JW, Kim YH, Kim SH, Han SH, Hahn SB. Chondrogenic differentiation of mesenchymal stem cells and its clinicai applications. Yonsei Med J. 2004; 45(Suppl):41-7.

Published

2007-02-28

How to Cite

Leite Segundo, A. V., & Vasconcelos, B. C. do E. (2007). Stem cells and tíssue engíneeríng: applícatíon’s perspectíves ín dentístry. Revista De Ciências Médicas, 16(1). Retrieved from https://seer.sis.puc-campinas.edu.br/cienciasmedicas/article/view/1072

Issue

Section

Atualização