Influências de um curto programa de treinamento aeróbio sobre o valor do limiar de variabilidade da freqüência cardíaca em mulheres sedentárias saudáveis
DOI:
https://doi.org/10.24220/2318-0897v21n1/6a1874Palavras-chave:
Estilo de vida sedentária, Exercício, Limiar anaeróbio, Teste de esforçoResumo
Objetivo
Utilizar o método do limiar de variabilidade da frequência cardíaca para revelar possíveis melhorias da capacidade funcional cardiorrespiratória.
Métodos
Estudo prospectivo longitudinal que envolveu 18 jovens sedentárias saudáveis, com idades entre 18 e 25 anos, submetidas a um protocolo de esforço máximo em esteira rolante com velocidade inicial de 4,0km/h e acréscimos de 1,0km/h/min, até a exaustão. Durante o protocolo de esforço máximo, os batimentos cardíacos foram registrados e depois calculados por um software para a análise do limiar de variabilidade da frequência cardíaca. Considerou-se o momento do limiar quando o índice desvio-padrão 1, utilizando-se a plotagem de Poincaré para calcular a variabilidade da frequência cardíaca, atingiu o valor de 3ms. Após o protocolo de esforço máximo, as voluntárias realizaram um treinamento aeróbio de 12 sessões de 40 minutos (20 minutos em esteira e 20 minutos em cicloergômetro), cuja intensidade foi estabelecida pela manutenção da frequência cardíaca a 65% da FCmax obtida no protocolo de esforço máximo. Após o treinamento aeróbio, o protocolo de esforço máximo foi repetido e os dados obtidos no momento do limiar de variabilidade da frequência cardíaca, pré e pós-treinamento aeróbio, foram comparados pelo teste de Mann-Whitney, com nível de significância de p≤0,05.
Resultados
As medianas no momento do limiar de variabilidade da frequência cardíaca revelaram significativas diferenças (p≤0,05), sendo: frequência cardíaca (batimentos por minuto)=141bpm antes do treinamento aeróbio e 149bpm após o mesmo; consumo de oxigênio (VO2mL/kg/min)=13,4 antes do treinamento aeróbio e 30,0 após; e velocidade da esteira=6,0km/h antes e 8,0km/h após.
Conclusão
A aplicação de um programa de treinamento aeróbio de curta duração mostrou-se efetiva na melhoria da capacidade funcional cardiorrespiratória dos voluntários estudados, e o método do limiar de variabilidade da frequência cardíaca foi eficiente para mostrar essa alteração.
Downloads
Referências
Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate: A longitudinal study. Ann Med Exp Biol Fenn. 1957; 35(3):307-15.
Fronchetti L, Nakamura FY, Aguiar CA, De-Oliveira FR. Regulação autonômica em repouso e durante exercício progressivo: aplicação do limiar de variabilidade da freqüência cardíaca. Rev Por Ciênc Desp. 2006; 6(1):21-8.
Kenney WL. Parasympathetic control of resting heart rate: Relationship to aerobic power. Med Sci Sports Exerc. 1985; 17(4):451-5.
Palatini P. Need for a revision of the normal limits of resting heart rate. J Hyertens. 1999; 33(2):622-5.
Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation. 1996; 93(5):1043-65.
Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: A review. Med Bio Eng Comput. 2006; 44:1031-51.
Paschoal MA, Volanti VM, Pires CS, Fernandes FC. Variabilidade da frequência cardíaca em diferentes faixas etárias. Rev Bras Fisioter. 2006; 10(4):413-9.
Cambri TL, Fronchetti L, De-Oliveira FR, Gevaerd MS. Variabilidade da frequência cardíaca e controle metabólico. Arq Sanny Pesq Saúde. 2008, 1(1):72-82.
Tulppo MP, Mäkikalio TH, Takala T, Seppänen T, Huikuri HV. Quantitative beat-to-beat analysis of heart rate dynamics during exercise. Am J Physiol .1996; 271(1Pt 2): H244-2.
Alonso DO, Forjaz CLM, Rezende LO, Braga AA, Barreto ACP, Negrão CE, et al. Comportamento da frequência cardíaca e da sua variabilidade durante as diferentes fases do exercício físico progressivo máximo. Arq Bras Cardiol. 1998; 71(6):787-2.
Lima JRP, Kiss MAPDA. Limiar de variabilidade da freqüência cardíaca. Rev Bras Ativ Fis Saúde.1999; 4(1):29-38.
Paschoal MA, Fontana CC. Method of heart rate variability threshold applied in obese and non-obese pre-adolescents. Arq Bras Cardiol. 2011; 96(6):450-6.
Brooks GA. Current concepts in lactate exchange. Med Sci Sports Exerc. 1991; 23(8):859-906.
Rabbia F, Silke B, Conterno A, Grosso T, De Vito B, Rabbone I, et al. Assessment of cardiac autonomic modulation during adolescent obesity. Obes Res. 2003; 11(4):541-8.
Burger JPW, Serne EH, Nolte F, Smulders YM. Blood pressure response to moderate physical activity is increased in obesity. Neth J Med. 2009; 67(8):342-6.
Dipla K, Nassis GP, Vrabas IS. Blood pressure control at rest and during exercise in obese children and adults. J Obes. 2012. doi: 10.1155/2012/147385.
Vanderlei LCM, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF. Noções básicas de variabilidade da freqüência cardíaca e sua aplicabilidade clínica. Rev Bras Cir Cardiovasc. 2009; 24(2):205-17.
Carter JB, Banister EW, Blaber AP. The effect of age and gender on heart rate variability after endurance training. Med Sci Sports Exerc. 2003; 35(8):1333-40.
Yamamoto Y, Hughson RL, Peterson JC. Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol. 1991; 71(3):1136-42.
Yamamoto Y, Hughson RL, Nakamura Y. Autonomic nervous system responses to exercise in relation to ventilatory threshold. Chest. 1992; 101(Suppl):206-10.
Nakamura FY, Aguiar CA, Fronchetti L, Aguira A, Lima JRP. Alteração do limiar de variabilidade da freqüência cardíaca após treinamento aeróbio de curto prazo. Motriz. 2005; 11(1):1-9.
Cavalcanti MDS, Reinert J, De-Oliveira FR, Bertuzzi RCM, Pires FO, Lima-Silva AE. Resposta da variabilidade da freqüência cardíaca e glicemia durante o exercício incremental. Braz J Biomotricity. 2010; 4(4):256-65.
Bernardi L, Piepoli M. Autonomic nervous system adaptation during physical exercise. Ital Heart J. 2001; 2(8):831-9.
Iellamo F. Neural mechanism of cardiovascular regulation during exercise. Auton Neurosci. 2001; 20:66-75.
Leblanc PJ, Peters SJ, Tunstall RJ, Cameron-Smith D, Heigenhauser GJF. Effects of aerobic training on pyruvate dehydrogenase kinase in human skeletal muscle. J Physiol. 2004; 557(Pt 2):559-70.
Ribeiro JP, Yang J, Adams RP, Kuka B, Knuttgen HG. Effect of different incremental exercise protocols on the determination of lactate and ventilatory threshold. Braz J Med Biol Res. 1986; 19(1):109-17.
Almeida MB, Araújo CGS. Effects of aerobic training on heart rate. Rev Bra Med Esporte. 2003; 9(2):104-12.
Crescêncio JC, Martins LEB, Murta Jr LO, Antloga CM, Kozuki RT, Santos MDB, et al. Measurement of anaerobic threshold during dynamic exercise in healthy subjects: Comparison among visual analysis and mathematical models. Comput Cardiol. 2003; 30:801-4.
Catai AM, Chacon-Mikahil MPT, Martinelli FS, Forti VAM, Silva E, et al. Effects of aerobic exercise training on heart rate variability during wakefulness and sleep and cardiorespiratory responses of young and middleaged healthy men. Braz J Med Biol Res. 2002; 35(6): 741-52.
Paschoal MA, Chacon-Mikahil MPT, Forti VAM, Golfetti R, Martins LEB, Gallo Junior L. Study of cardiorespiratory variables at the anaerobic threshold (AT) in trained and sedentary subjects. Faseb J. 1996; 10(3):376.