Células-tronco e engenharia tecidual: perspectivas de aplicação em odontologia
Palavras-chave:
Células-tronco, Odontologia, Proteínas morfogenéticas ósseasResumo
As células-tronco, também conhecidas como células fonte ou stem cells, são definidas como células com baixo grau de diferenciação, que possuem a capacidade de se auto-reproduzirem, bem como gerar células diferenciadas de tipos especializados de tecidos. Inúmeros trabalhos relatam a utilização da terapia celular por meio de transplantes de células progenitoras em humanos no tratamento de doenças degenerativas, em alterações do desenvolvimento humano e na regeneração de tecidos. Em Odontologia, a expectativa é de novas alternativas na regeneração dentinopulpar, regeneração do tecido periodontal, regeneração óssea e na regeneração da cartilagem da articulação temporomandibular. O objetivo do presente trabalho é descrever perspectivas da engenharia tecidual, envolvendo a participação de células-tronco e sua aplicabilidade no estágio atual da Odontologia.
Downloads
Referências
Freed CR. Will embryonic stem cells be a useful so rce of dopamine neurons for transplant into patients with Parkinson's disease? Proc Natl Acad Sei USA. 2002; 99(4):1755-7.
Thesleff 1, Tummers M. Stern cells and tissue engineering: prospects for regenerating tissues in dental practice. Med Princ Pract. 2003; 12(Suppl 1):43-50.
Nakashima M, Reddi AH. The application of bane morphogenetic proteins to dental tissue engineering. Nat Biotechnol. 2003; 21(9):1025-32.
Nakashima M. Bone morphogenetic proteins in dentin regeneration for potential use in endodontic therapy. Cytokine Growth Factor Reviews. 2005; 16(3):369-76.
Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev. 2003; 13(5):543-50.
Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004; 116(5):639-48
Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, et ai. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sei USA. 2003; 100(10):5807-12.
Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotech. 1998; 16(3):247-52
Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell. 1997; 88(3):287-98
O. Junqueira LC, Carneiro J. Biologia celular e molecular 7a. ed. Rio de Janeiro: Guanabara Koogan; 2000. p.227.
Thomson JA, ltskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et ai. Embryonic stem cell lines derived from human blastocysts. Science. 1998; 282(5391):1145-7.
Weissman IL. Stern cells: units of development, units of regeneration and units in evolution. Cell. 2000; 100(1):157-68.
Fuchs E, Segre JA. Stern cells: a new lease on life. Cell. 2000; 100(1):143-55.
Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000; 287(5457):1427-30.
Spradling A, Drummond-Barbosa D, Kai T. Stern cells find their niches. Nature. 2001; 414(6859):98-104
Bjornson C R, Rietze RL, Reynolds, BA, Magli MC, Vescovi AL. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science. 1999; 283(5401):534-7
Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries? Nat Med. 2000; 7(4):393- 5.
Camargo FD, Chambres SM, Goodell MA. Stern cells plasticity: from transdifferentiation to macrophage fusion. Cell Prolif. 2004; 37(1):55-65.
Gronthos S, Mankani M, Brahim J, Rokey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sei USA. 2000; 97(25): 13625-30.
Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et ai. Stern cell properties of human dental pulp stem cells. J Dent Res. 2002; 81(8):531-5.
Nakashima M, Nagasawa H, Yamada Y, Reddi AH. Regulatory role of transforming growth factor- , bone morphogenetic protein-2 and protein 4 on gene expression of extracellular matrix protein and differentiation of dental pulp cells. Dev Biol. 1994; 162(1):18-28.
Tziafas D, Smith AJ, Lesot H. Designing newtreatment strategies in vital pulp therapy. J Dent. 2000; 28(2):77- 92.
Reddi AH. lnterplay between bone morphogenetic proteins and cognate binding protein in bone and cartilage development: noggin, chordin and DNA. Arthritis Res. 2001; 3(1):1-5.
Reddi AH. Bone matrix in the solid state: geometric influence on differentiation of fibroblasts. Adv Biol Med Phys. 1974; 15(0):1-18
Reddi AH, Huggins CB. Cyclic electrochemical inactivation and restoration of competence of bone matrix to transform fibroblasts. Proc Natl Acad Sei USA. 1974; 71(5):1648-52
Sampath TK, Reddi AH. lmportance of geometry of the extracellular matrix in endochondral bone differentiation. J Cell Biol. 1984; 98(6):2192-7.
Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues. Ann Biomed Eng. 2004; 32(1):148-59.
Urist MR. Bone: formation by autoindution. Science. 1965; 150(698):893-9.
Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, et ai. Novel regulators of bone formation: molecular clones and activities. Science. 1998; 242:1528-34.
Talwar R, Di Silvo L, Hughes FJ, King GN. Effects of carrier release kinetics on bone morphogenetic protein-2-induced periodontal regeneration in vivo. J Clin Periodontol. 2001; 28(4):340-7.
Ripamonti U, Van Den Heever B, Sampath TK, Tucker MM, Rueger DC, Reddi AH. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7). Growth factors. 1996; 13(3-4) 273-89.
Nakashima M. lnduction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 e -4. J Dent Res. 1994; 73(9):1515-22.
Bianco P, Robey PG. Stern cell in tissue engineering. Nature. 2001; 414(6859): 118-21
lohara K, Nakashima M, lto M, lshikawa M, Nakashima A, Akamine A. Dentin regeneration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2. J Dent Res. 2004; 83(8):590-5.
Polson AM, Proye MP. Fibrin linkage: a precursor for a new attachment. J Periodontol. 1983; 54(3):141-7.
Gottlow J, Nyman S, Lindhe J, Karring T, Wennstrom J. New attachment formation in the human periodontium by guided tissue regeneration. Case report. J Clin Periodontol. 1986; 13(6):604-16
Ripamonti U, Heliotis M, Rueger DC, Sampath TK. lnduction of cementogenesis by recombinant human osteogenic protein-1 (hOP-1/BMP-7) in the baboon. Arch Oral Biol. 1996; 41(1):121-6
Ripamonti U, Duneas N. Tissue morphogenesis and regeneration by bone morphogenetic proteins. Plast Reconstr Surg. 1998; 101(1):227-39.
Ripamonti U, Reddi AH. Tissue engineering, morphogenesis and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med. 1997; 8(2):154-63.
Sun Y, Ma G, Li D. Repair of large cranial defect using allogeneic cranial bone and bone morphogenetic protein. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi. 1995; 11(1):8-9.
Boyne PJ. Application of bone morphogenetic proteins in the treatment of clinicai oral and maxillofacial osseous defect. J Bone Joint Surg Am. 2001; 83(Suppl 1):146-50.
Cook SD, Salkeld SL, Rueger DC. Evaluation of recombinant human osteogenic protein-1 (rhOP-1) placed with dental implants in fresh extraction sites. J Oral Implanto!. 1995; 21(4):281-9
Sykaras N, Triplett RG, Nunn ME, lacopino AM, Opperman LA. Effects of recombinant human bone morphogenetic protein-2 on bone regeneration and osteointegration of dental implants. Clin Oral lmplants Res. 2001; 12(4):339-49
Mao JJ. Stem-cell-driven regeneration of synovial joints. Biol Cell. 2005; 97(5):289-301.
Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stern cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003; 48(12):3464-74.
Lee JW, Kim YH, Kim SH, Han SH, Hahn SB. Chondrogenic differentiation of mesenchymal stem cells and its clinicai applications. Yonsei Med J. 2004; 45(Suppl):41-7.