Characterízatíon and pharmacologícal actívíty of zínc(Il)-díclofenac and zínc(Il)-díclofenac-hydroxypropylbeta-cyclodextrín ínclusíon complex

Authors

  • Viviane Aparecida Guilherme
  • Sílvia Mansur Scagliusi
  • Eneida de Paula
  • Maria Cristina de Almeida
  • Daniele Ribeiro de Araujo

Keywords:

Non-steroidal anti inflammatory, Diclofenac, Cyclodextrins, Metal complex, lnclusion complex

Abstract

This study aimed to present the synthesis, the physical!chemical characterization and the pharmacologica/ evaluation of the metal comp!ex zinc(/1)-diclofenac and its inc!usion in hydroxypropy/-/3-cyclodextrin, with both of these being compared to potassium-diclofenac. The metal complex zinc(ll)-diclofenac was synthesized via the direct mixture of aqueous solutions of zinc(ll)-su/fate and potassium­ diclofenac (molar ratio 1:2) and was subsequently included in hydroxypropyl-/3- cyclodextrin (molar ratio 1:1). The triais to determine solubility and melting point showed changes characteristic of the complexation of the drug with meta/fie ians. On the other hand, the interaction with cyclodextrins was determined by morphologica/ changes in the drug crystals and the enhanced zinc(ll)-diclofenac aqueous so/ubility, after inclusion in the hydroxypropyl-/3-cyclodextrin hydrophobic cavity (association constant Ks=623. 6 M'). Pharmaco!ogical eva/uation showed that treatment with zinc(ll)-diclofenac or zinc(ll)-diclofenac-hydroxypropy/-/3- cyclodextrin brought a significant reduction in the volume of abdominal writhing and u/cers, when compared to potassium-diclofenac (p<0.001), enhancing the anti-inflammatory activity and reducing the adverse effects.

Downloads

Download data is not yet available.

References

Abou-Mohamed, G.; EI-Kashef, HA; Salem, HA & Elmazar, M.M. (1995). Zinc-naproxen complex: synthesis, physicochemical and biological evaluation. lnternational Journal of Pharmaceutics, 260(2):217-27.

Andrade, A.; Namora, S.F.; Woisky, G.; Najjar, R.; Sertié, J. & Oliveira-Silva, D. (2000). Synthesis and characterization of a diruthenium-ibuprofenato-complex comparing its antiinflamatory activity with that of a Cooper (II)-ibuprofen complex. Journal of lnorganic Biochemistry, 81:23-7.

Collier, H.O.J.; Dinneen, L.C.; Johnson, CA & Schneider, C. (1968). The abdominal constriction response and its suppression by analgesic drugs in the mouse. British Journal Pharmacology and Chemotherapy, 32:295-31O.

De Araujo, D.R.; Tsuneda, S.S.; Cereda, C.M.; Carvalho, F.G.; Preté, P.S.C., Fernandes, SA; Yokaichiya, F.; Franco, M.K.; Mazzaro, I.; Fraceto, L.F.; Braga, A.FA & De Paula, E. (2008). Development and pharmacological evaluation of ropivacaine-2-hydroxypropyl-beta-cyclodextrin inclusion complex. European Journal of Pharmaceutical Sciences, 33(1):60-71.

Frõmming, K.-H. & Szejtli, J. (1994). Topics in inclusion science: cyclodextrins in pharmacy. Hungria: Kluwer Academic Publishers.

Higuchi, T. & Connors, K.A. (1965). Phase-solubility techniques. Advances in Analytical Chemistry and lnstruments, 4:117-212.

Jackson, G.E.; Mkhonta-Gama, L.; Voyé, A. & Kelly, M. (2000). Design of copper-based anti-inflammatory drugs. Journal of lnorganic Biochemistry, 79(1-4):147-52.

Kis, B.; Snipes, J.A. & Busija D.W. (2005). Acetaminophen and the cyclooxygenase-3 puzzle: sorting out facts, fictions, and uncertaintie. Journal of Pharmacology and Experimental Therapeutics, 315(1): 1-7.

Kummer, C.L. & Coelho, T.C.R.B. (2002). Antiinflamatórios não esteróides inibidores da ciclooxigenase-2 (COX-2): aspectos atuais. Revista Brasileira de Anestesio/agia, 52(4):498-512.

Lemoine, P.; Viossat, B.; Dung, N.H.; Tomas, A.; Morgant, G.; Greenaway; F.T. & Sorenson, J.R. (2004). Synthesis, crystal structures and anti-convulsant activities of ternary [Zn(ll)(3,5-diisopropylsalicylate)(2)], [Zn(ll)(salicylate)(2)] and [Zn(ll)(aspirinate)(2)] complexes. Jounal of /norganic Biochemistry, 98(11):1734-49.

Levine, R.J. (1971). A method for rapid production of stress ulcer in rats. ln: Pfeifer, C.J. (ed.). Peptic ulcers. Copenhager: Munksgaard. p.92-7.

Loftsson, T. & Másson, M. (2001). Cyclodextrins in topical drug formulations: theory and practice. lnternational Journal of Pharmaceutics, 225(1-2):15-30.

Mehta, S.K.; Bhasin, K.K. & Dham, S. (2008). Energetically favorable interactions between diclofenac sodium and cyclodextrin molecules in aqueous media. Journal of Colloid and Interface Science, 326(2):374-81.

Miro, A.; Rondinone, A.; Nappi, A.; Ungaro, F.; Quaglia, F. & La Rotonda, M.I. (2009). Modulation of release rate and barrier transport of diclofenac incorporated in hydrophilic matrices: role of cyclodextrins and implications in oral drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 72(1):76-82.

Mogil, J.S.; Wilson, S. G.; Bom, K.; Lee, S.E.; Chung, K.; Raber, P.; Pieper, J.O.; Hain, H.S.; Belknap, J.K.; Hubert, L.; Elmer, G.1.; Chung, J.M. & Devor, M. (1999). Heritability of nociception 1: responses of 11 inbred mouse strains on 12 measures of nociception. Pain, 80(1):67-82.

Nascimento, J.W.; Santos, L.H.; Nothenberg, M.S.; Coelho, M.M.; Oga, S. & Tagliati C.A. (2003). Anti-inflammatory activity and gastric lesions induced by zinc-tenoxicam. Pharmacology, 68(2):64-9.

Navarro, C.; Bravo, M.L.; Carulla, C. & Bulbenna O. (1994). Gastrotoxic activity and inhibitory effects on gastric mucosa! PGE2 production with different non-steroidal anti-inflammatory drugs: modifications induced by pretreatment with zinc acexamate. Prostag/andins Leukotrienes Essential Fatty Acids, 50(6):305-10.

Pinheiro, R.M. & Calixto, J.B. (2002) Effect of the Selective COX-2 inhibitors, celecoxib and rofecoxib in rat acute models of inflammation. lnflammation Research 51(12):603-10.

Santos, L.H.; Feres, C.A.O.; Melo, F.H.; Coelho, M.M.; Nothenberg, M.S.; Oga, S. & Tagliati, C.A. (2004). Anti­ inflamatory, antinociceptive and ulcerogenic activity of a zinc-diclofenac complex in rats. Brazilian Journal of Medical and Bio/ogical Research, 37(8):1205-13.

Smith, C.J.; Zhang, Y.; Koboldt, C.M.; Muhammad, J.; Zweifel, B.S.; Shaffer, A.; Talley, J.J.; Masferree, A.L.; Seibert,

K. & lsakson, P.C. (1998). Pharmacological Analysis of cyclooxygehase-1 in inflammation. Proceedings of the National Academy of Sciences, 95(22):13313-18.

Sorenson, J.R. (1976). Copper chelates as possible active forms of the antiarthritic agents. Journal of the Medicinal Chemistry, 19(1): 135-48.

Sorenson, J.R. (1982). The anti-inflammatory activities of copper complexes. Metal Ians in Biological Systems,12:77- 124.

Tagliati, C.A.; Kimura, E.; Nothenberg, M.S.; Santos, S.R. & Oga, S. (1999). Pharmacokinetic profile and adverse gatric effect of zinc-piroxicam in rats. General Pharmacology, 33(1):67-71.

Viossat, B.; Morgant, G.; Sorenson, J.R.; Roch-Arveiller, M.; Daran, J.C; Greenaway, F.T. & Nguyen, H u./ó.(2002).

Crystallochemistry of copper (li) and zinc (li) chelates by nonsteroidal antiinflammatory drugs. Annales Pharmaceutiques Françaises, 60(2):102-14.

Wieclaw, K.; Korchowiec, B.; CORVIS, Y.; Korchowiec, J.; Guermouche, H. & Rogalska, E. (2009). Meloxicam and meloxicam-beta-cyclodextrin complex in model membranes: effects on the properties and enzymatic lipolysis of phospholipid monolayers in relation to anti­ inflammatory activity. Langmuir, 25(3):1417-26.

Published

2010-12-31

How to Cite

Guilherme, V. A., Scagliusi, S. M., Paula, E. de, Almeida, M. C. de, & Araujo, D. R. de. (2010). Characterízatíon and pharmacologícal actívíty of zínc(Il)-díclofenac and zínc(Il)-díclofenac-hydroxypropylbeta-cyclodextrín ínclusíon complex. Bioikos, 24(2). Retrieved from https://seer.sis.puc-campinas.edu.br/bioikos/article/view/564

Issue

Section

Artigos