Biodisponibilidade de vitaminas lipossolúveis
Palavras-chave:
absorção, biodisponibilidade, vitaminas lipossolúveisResumo
O termo biodisponibilidade representa a parte do nutriente ingerido que tem o potencial de suprir as demandas fisiológicas em tecidos alvos; por definição, não corresponde, na maioria das vezes, à quantidade ingerida. Apesar da concordância entre alguns pesquisadores no que se refere ao conceito de biodisponibilidade, vários termos são comumente utilizados em trabalhos científicos como sinônimos desse, em função das peculiaridades dos métodos empregados na sua determinação. Estudos de balanço, relação dose-efeito e uso de isótopos são alguns dos métodos mais comumente utilizados para determinar a biodisponibilidade de vitaminas. Tais metodologias, além de avaliar a biodisponibilidade do nutriente, devem tanto quanto possível procurar elucidar ou levar em consideração os fatores que interferem na sua absorção e utilização. Dentre esses fatores, estão a interação com outros nutrientes ou componentes da dieta e as condições fisiológicas dos organismos submetidos ao estudo. As vitaminas lipossolúveis, devido ao seu metabolismo complexo, diversidade funcional e mecanismo de absorção relacionado a lipoproteínas, apresentam alguns problemas específicos no que se refere à avaliação de sua biodisponibilidade em alimentos ou dietas, necessitando, por ocasião dos ensaios, de um criterioso planejamento e análise de resultados. Dessa forma, ressaltaram-se, nesta revisão, alguns aspectos importantes com relação à biodisponibilidade das vitaminas lipossolúveis, como: diversidade de termos usados, metodologia para avaliação, fatores que interferem na absorção e utilização, entre outros, visto que a avaliação da biodisponibilidade de algumas vitaminas lipossolúveis ainda não possui métodos validados, gerando uma grande variação nos resultados obtidos nas pesquisas realizadas nesta área.
Referências
Jackson MJ. Assessment of the bioavailability of micronutrients. Eur J Clin Nutr. 1997; 51(1):S1-2
Ball G. Bioavailability and analysis of vitamins in foods. London: Chapman & Hall; 1998.
Jackson MJ. The assessment of bioavailability of micronutrients: Introduction. Eur J Clin Nutr. 1997; 51(1):S1-5.
Castenmiller JJ, West CE. Bioavailability and bioconversion of carotenoids. Annu Rev Nutr. 1998; 18:19-38
Castenmiller JJM, West CE, Linssen JPH, van het Hof KH, Voragen AGJ. The food matrix of spinach is a limiting factor in determining the bioavailability of β-carotene and to a lesser extent of lutein in humans. J Nutr. 1999; 129(2):349-55.
Acuff RV, Thedford SS, Hidiroglou NN, Papas AM, Odom TA Jr. Relative bioavailability of RRR- and all-rac-∝-tocopheryl acetate in humans: studies using deuterated compounds. Am J Clin Nutr. 60(3):397-402.
van Lieshout M, West CE, van Breemen RB. Isotopic tracer techniques for studying the bioavailability and bioefficacy of dietary carotenoids, particularly β-carotene, in humans: a review. Am J Clin Nutr. 2003; 77(1):12-28.
Erdman JW, Poor CL, Dietz JM. Factors affecting the bioavailability of vitamin A, carotenóids, and vitamin E. Food Technol. 1988; 41(10):214-16.
Blomhoff R, Green MH, Green JB. Vitamin A metabolism: new perspectives on absorption, transport, and storage. Physiol Rev. 1991; 71(4):951-90.
Kusin JA, Reddy V, Sivakumar B. Vitamin E supplements and the absorption of massive dose of vitamin A. Am J Clin Nutr. 1974; 27(8):774-6.
Napoli JL, Beck CD. Alpha-tocopherol and phylloquinone as non-competitive inhibitors of retinyl ester hydrolysis. Biochem J. 1984; 223(1):267-70.
National Research Council. Recommended Dietary Allowances. 10th ed. Washington (DC); National Academy Press; 1989. p.78-114.
Jeppesen J, Chen Y, Zhou M, Wang T, Reaven G. Effect of variations in oral fat and carbohydrate load on postprandial lipemia. Am J Clin Nutr. 1995; 62(6):1201-5.
Rodriguez MS, Irwin MI. A conspectus of research on vitamin A requeriments of men. J Nutr. 1972; 102(7):909-68
Stahl W, Schwars W, von Laar J, Sies H. All-trans β-carotene preferentially accumulates in human chylomicrons and very low density lipoproteins compared with the 9-cis geometrical isomer. J Nutr. 1995; 125(8):2128-33
Roodenburg AJ, Leenen R, van het Hof KH, Weststrate JA, Tijburg LB. Amount of fat in the diet affects bioavailability of lutein esters but not of α-carotene, β-carotene, and vitamin E in humans. Am J Clin Nutr. 2000; 71(5):1187-93
van het Hof KH, West CE, Weststrate JA, Hautvast JGAJ. Dietary factors that affect the bioavailability of carotenoids. J Nutr. 2000; 130(3):503-6.
Riedl J, Linseisen J, Hoffmann J, Wolfram G. Some dietary fibers reduce the absorption of carotenoids in women. J Nutr. 1999; 129(12):2170-6
Rock C, Swendseid M. Plasma β-carotene response in humans after meals supplemented with dietary pectin. Am J Clin Nutr. 1992; 55(1):96-9
Erdman JW, Jr., Fahey GC, Jr., White CB. Effects of purified dietary fiber sources on β-carotene utilization by the chick. J Nutr. 1986; 116(12): 2415-23.
Stamp TCB. Intestinal absorption of 25- hydroxycholecalciferol. Lancet. 1974; 2 (7873): 121-3
Dueland SP, Helgerud JL, Drevon CA. Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol. 1983; 245:E463-7.
van den Berg H. Bioavailability of vitamin D. Eur J Clin Nutr. 1997; 51(1):S76-9.
Reed JS, Meredith SC, Nemchausky BA. Bone disease in primary biliary cirrhosis: reversal of osteomalacia with oral 25-hydroxyvitamin D. Gastroenterology. 1980; 78(3):512-7.
Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000; 72(3):690-3
Epstein S, Bell NH, Shary J, Shaw S, Greene A, Oexmann MJ. Evidence that obesity does not influence the vitamin D-endocrine system in blacks. J Bone Miner Res. 1986; 1(2):181-4.
Holmes RP, Kummerow FA. The relationship of adequade and excessive intake of vitamin D to health and sisease. J Am. Coll Nutr. 1983, 2(2): 173-99.
Sitrin MD, Bengoa JM. Intestinal absorption of cholecalciferol and 25-hydroxycholicalciferol in chronic cholestatic liver disease. Am J Clin Nutr. 1987; 46(6):1011-5.
Holmberg I, Aksnes L, Berlin T, Lindback B, Zemgals J, Lindeke B. Absorption of a pharmacological dose of vitamin D3 from two different lipid vehicles in man: comparison of peanut oil and a medium chain triglyceride. Biopharm Drug Dispos. 1990; 11(9):807-15.
Gascon-Barré M, Joly JG. The biliary excretion of [ 3H]-25-hydroxyvitamin D3 following chronic ethanol administration in the rat. Life Sci. 1981; 28(3):279-86.
Batchelor AJ, Compston JE. Reduced plasma half-life of radio-labelled 25-hydroxyvitamin D3 in subjects receiving a high-fiber diet. Br J Nutr. 1983; 49(2):213-6.
Traber MG, Cohn W, Muller DPR. Absorption, transport and delivery to tissues. In: Packer L, Fuchs J, editors. Vitamin E in health and disease. New York: Marcel Dekker; 1992. p.35-51
Sato Y, Hagiwara K, Arai H, Inoue K. Purification and characterization of the µ-tocopherol transfer protein from rat liver. FEBS Lett. 1991; 228(1-2): 41-5.
Burton GW, Ingold KU, Foster DO, Cheng SC, Webb A, Hughes L, Lusztyk E.Comparison of free α-tocopherol and α-tocopherol acetate as sources of vitamin E in rats and human. Lipids. 1988; 23(9):834-40.
Fukui E, Kurohara H, Kageyu A, Kurosaki Y, Nakayama T, Kimura T. Enhancing effect of medium-chain triglycerides on intestinal absorption of d-∝-tocopherol acetate from lecithin- -dispersed preparations in the rat. J Pharmacobiodyn. 1989; 12(2):80-6.
Bj∅neboe A, Bj∅neboe GEA, Drevon CA. Absorption, transport and distribution of vitamin E. J Nutr. 1990; 120(3):233-42
Bieri JG, Tolliver TJ. Reversal by bile acid on the inhibition of α-tocopherol absorption by retinoic acid. J Nutr. 1982; 112(2):401-3.
Kahlon TSC, Hoefer FI, Betschart JL. Bioavailability of vitamins A and E as influenced by wheat bran and bran particle size. Cereal Chem. 1986; 63:490-3.
Schaus EE, de Lumen BO, Chow FIea. Bioavailability of vitamin E in rats fed graded levels of pectin. J Nutr. 1985; 115(2):263-70.
van den Berg H, van der Gaag M, Hendriks H. Influence of lifestyle on vitamin bioavailability. Int J Vitam Nutr Res. 2002; 72(1):53-9.
Groenen-van Dooren MM, Ronden JE, Soute BA, Vermeer C. Bioavailability of phylloquinone and menaquinones after oral and colorectal administration in vitamin K-deficient rats. Biochem Pharmacol. 1995; 50(6):797-801
Dôres SMC, Paiva ASR, Campana AO. Vitamina K: metabolismo e nutrição. Rev Nutr. 2001; 14(3):207-18
Gijsbers BL, Jie KS, Vermeer C. Effect of food composition on vitamin K absorption in human volunteers. Br J Nutr. 1996; 76(2):223-9.
Booth SL, O‘Brien Morse ME, Dallal GE, Davidson KW, Gundberg CM. Response of vitamin K status to different intakes and sources of phylloquinine- -rich foods: comparison of younger and older adults. Am J Clin Nutr. 1999; 70(3):368-77.
Allison PM, Mummah-Schendel LL, Kindberg CGea. Effects of a vitamin K-deficient diet and antibiotics in human volunteers. J Lab Clin Med. 1987; 110(2):180-8.
Uchida KK, T. Relationships between dietary and intestinal vitamin K, clotting factor levels, plasma vitamin K, and urinary Gla. In: Suttie JW, editor. Current advances in Vitamin K Research. New York: Elsevier; 1988. p.477-92.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Denise Machado MOURÃO, Nadja Santos de SALES, Sandra Bragança COELHO, Helena Maria PINHEIRO-SANTANA
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.