Body composition of women with and without dynapenia defined by different cut-off points

Autores

  • Lucas dos SANTOS Universidade Estadual do Sudoeste da Bahia
  • Camille Giehl Martins MIRANDA Universidade Estadual do Sudoeste da Bahia
  • Tasso Carvalho Barberino de SOUZA Universidade Estadual do Sudoeste da Bahia
  • Thais Alves BRITO Universidade Estadual do Sudoeste da Bahia
  • Marcos Henrique FERNANDES Universidade Estadual do Sudoeste da Bahia
  • José Ailton Oliveira CARNEIRO Universidade Estadual do Sudoeste da Bahia

Palavras-chave:

Adipose tissue, Muscle weakness, Postmenopause, Skeletal muscles

Resumo

Objective
To compare body composition of postmenopausal women with and without dynapenia, defined by different cut-off points.
Methods
Body composition was assessed by electrical bioimpedance and the nutritional status by the body mass index. Dynapenia was diagnosed according to handgrip strength, using the following cut-off points: handgrip strength <16kgf and <20 kgf.

Results
A total of 171 women (50 to 92 years of age) participated in the investigation. The mean age of non-dynapenic and dynapenic women (handgrip strength <20kgf) was 69.4±8.2 and 74.5±8.2 years, respectively. The mean age of women with dynapenia (handgrip strength <16kgf) was 75.0±10.1 years and non-dynapenic women, 71.1±8.2 years. It was found that dynapenic women, with handgrip strength <20 and <16kgf, had an average of 2.38 and 2.47kg less muscle mass respectively, when compared to non-dynapenic women (p<0.05). However, there was no difference in muscle mass between the different dynapenic groups. Non-dynapenic women (handgrip strength ≥20kgf) had more total (3.55kg) and central fat (1.47kg) (p<0.05).
Conclusion
Dynapenic women, diagnosed considering both cutoff points, had less total and segmental muscle mass compared to non-dynapenic women. In addition, dynapenic women with handgrip strength <20kgf had lower total and trunk adiposity.

Referências

Chidi-Ogbolu N, Baar K. Effect of estrogen on musculoskeletal performance and injury risk. Front in Physiol. 2018;9:1834. https://doi.org/10.3389/fphys.2018.01834

Karvonen-Gutierrez C, Kim C. Association of mid-life changes in body size, body composition and obesity status with the menopausal transition. Healthcare. 2016;4(3):42. https://doi.org/10.3390/healthcare4030042

Bacon JL. The menopausal transition. Obstet Gynecol Clin of North Am. 2017;44(2):285-96. https://doi.org/10.1016/j.ogc.2017.02.008

Clark BC, Manini TM. Sarcopenia≠dynapenia. J Gerontol Series A: Biol Sci Med Sci. 2008;63(8):829-34.

Marques KM, Previato MNF, Freitas TI, Goulart RMM, Aquino RC, Previdell AN. Evaluation of dynapenia in the elderly in São Caetano do Sul, São Paulo, Brazil. Fisio Mov. 2019;32e003218. https://doi.org/10.1590/1980-5918.032.AO18

Alexandre TS, Duarte YAO, Santos JLF, Lebrão ML. Prevalência e fatores associados à sarcopenia, dynapenia e sarcodynapenia em idosos residentes no Município de São Paulo-Estudo SABE. Rev Bra Epidemiol. 2019;21:180009.

Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle. 2018;9(1):3-19. https://doi.org/10.1002/jcsm.12238

Aubertin-Leheudre M, Anton S, Beavers DP, Manini TM, Fielding R, Newman A, et al. Dynapenia and metabolic health in obese and nonobese adults aged 70 years and older: the LIFE Study. J Am Med Dir Assoc. 2017. https://doi.org/10.1016/j.jamda.2016.10.001

Tagliaferri C, Wittrant Y, Davicco MJ, Walrand S, Coxam V. Muscle and bone, two interconnected tissues. Ageing Res Rev. 2015;21:55-70. https://doi.org/10.1016/j.arr.2015.03.002

Hamad B, Basaran S, Benlidayi IC. Osteosarcopenia among postmenopausal women and handgrip strength as a practical method for predicting the risk. Aging Clin Exp Res. 2019;1-8. https://doi.org/10.1007/s40520-019-01399-w

Dulac M, Boutros GEH, Pion C, Barbat-Artigas S, Gouspillou G, Aubertin-Leheudre M. Is handgrip strength normalized to body weight a useful tool to identify dynapenia and functional incapacity in post-menopausal women? Bra J of Phys Ther. 2016;20(6):510-6. https://doi.org/10.1590/bjpt-rbf.2014.0184

Iwamura M, Kanauchi M. A cross-sectional study of the association between dynapenia and higher-level functional capacity in daily living in community-dwelling older adults in Japan. Bmc Geriatr. 2017;17(1):1. https://doi.org/10.1186/s12877-016-0400-5

Scott D, Daly RM, Sanders KM, Ebeling PR. Fall and fracture risk in sarcopenia and dynapenia with and without obesity: the role of lifestyle interventions. Curr Osteoporos Rep. 2015;13(4): 235-44. https://doi.org/10.1007/s11914-015-0274-z

García-Hermoso A, Cavero-Redondo I, Ramírez-Vélez R, Ruiz JR, Ortega FB, Lee DC, et al. Muscular strength as a predictor of allcause mortality in an apparently healthy population: a systematic review and meta-analysis of data from approximately 2 million men and women. Arch Phys Med Rehabil. 2018;99(10):2100-13. https://doi.org/10.1016/j.apmr.2018.01.008

Volaklis KA, Halle M, Meisinger C. Muscular strength as a strong predictor of mortality: a narrative review. Eur J Intern Med. 2015;26(5):303-10. https://doi.org/10.1016/j.ejim.2015.04.013

Li R, Xia J, Zhang XI, Gathirua-Mwangi WG, Guo J, Li Y, et al. Associations of muscle mass and strength with all-cause mortality among US older adults. Med Sci Sports Exerc. 2018;50(3):458-67. https://doi.org/10.1249/MSS.0000000000001448

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. https://doi.org/10.1093/ageing/afz046

Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A, et al. Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol. 2003;95(5):1851-60. https://doi.org/10.1152/japplphysiol.00246.2003

Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, et al. Grip strength across the life course: normative data from twelve British studies. Plos One. 2014;9(12):e113637. https://doi.org/10.1371/journal.pone.0113637

Frisancho AR. New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. Am J Clin Nutr. 1984;40(4):808-19. https://doi.org/10.1093/ajcn/40.4.808

Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica. Diretrizes brasileiras de obesidade. 4a. ed. São Paulo: Associação; 2016 [cited: 2019 June 11]. Available from: https://abeso.org.br/wp-content/uploads/2019/12/Diretrizes-Download-Diretrizes-Brasileiras-de-Obesidade-2016.pdf

Figueiredo IM, Sampaio RF, Mancini MC, Silva CM, Souza MAP. Teste de força de preensão utilizando o dinamômetro Jamar. Acta Fisiátrica. 2007;14(2):104-10. https://doi.org/10.5935/0104-7795.20070002

Filion ME, Barbat-Artigas S, Dupontgand S, Fex A, Karelis AD, Aubertin-Leheudre M. Relationship between protein intake and dynapenia in postmenopausal women. J Nutr Health Aging. 2012;16(7):616-9. https://doi.org/10.1007/s12603-012-0054-8

Barbat-Artigas S, Dupontgand S, Fex A, Karelis AD, Aubertin-Leheudre M. Relationship between dynapenia and cardiorespiratory functions in healthy postmenopausal women: novel clinical criteria. Menopause. 2011;18(4):400-5. https://doi.org/10.1097/gme.0b013e3181f7a596

Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front in Physiol. 2012;3:260. https://doi.org/10.3389/fphys.2012.00260

Tessier AJ, Wing SS, Rahme E, Morais JA, Chevalier S. Physical function-derived cut-points for the diagnosis of sarcopenia and dynapenia from the Canadian longitudinal study on aging. J Cachexia Sarcopenia Muscle. 2019;10(5):985-99. https://doi.org/10.1002/jcsm.12462

Greendale GA, Sternfeld B, Huang M, Han W, Karvonen-Gutierrez C, Ruppert K, et al. Changes in body composition and weight during the menopause transition. JCI Insight. 2019;4(5):124865. https://doi.org/10.1172/jci.insight.124865

Mulligan R, Gilmer-Scott M, Kouchel D, Nickelson D, Safavi A, Drickamer M, et al. Unintentional weight loss in older adults: a geriatric interprofessional simulation case series for health care providers. MedEdPORTAL. 2017;20;13:10631. https://doi.org/10.15766/mep_2374-8265.10631

Ely BR, Clayton ZS, McCurdy CE, Pfeiffer J, Minson CT. Meta-inflammation and cardiometabolic disease in obesity: Can heat therapy help? Temperature (Austin). 2017;10;5(1):9-21. https://doi.org/10.1080/23328940.2017.1384089

Cooke AA, Connaughton RM, Lyons CL, McMorrow AM, Roche HM. Fatty acids and chronic low grade inflammation associated with obesity and the metabolic syndrome. Eur J Pharmacol. 2016;15;785:207-14. https://doi.org/10.1016/j.ejphar.2016.04.021

Martyniak K, Masternak MM. Changes in adipose tissue cellular composition during obesity and aging as a cause of metabolic dysregulation. Exp Gerontol. 2017;94:59-63. https://doi.org/0.1016/j.exger.2016.12.007

Poledne R, Králová Lesná I, Čejková S. Adipose tissue and atherosclerosis. Physiol Res. 2015;64(Suppl3):S395-402. https://doi.org/10.33549/physiolres.933152

Gonçalves TJMG, Horie LMH, Gonçalves SEAB, Bacchi MK, Bailer MC, Barbora Silva TG. Diretriz BRASPEN de terapia nutricional no envelhecimento. Braspen J. 2019 [cited: 2019 June 11];34(3):1-68. Available from: https://nutritotal.com.br/pro/wp-content/uploads/sites/3/2019/11/Material-1-diretriz-TN-no-envelhecimento.pdf

Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sport Med. 2020;54(24):1451-62. https://doi.org/10.1136/bjsports-2020-102955

Fragala MR, Cadore EL, Dorgo S, Izquierdo M, Kraemer WJ, Peterson MD, et al. Resistance training for older adults: position statement from the national strength and conditioning association. J Strength Cond Res. 2019;33(8):2019-52. https://doi.org/10.1519/JSC.0000000000003230

Downloads

Publicado

06-07-2022

Como Citar

dos SANTOS, L. ., Giehl Martins MIRANDA, C. ., Carvalho Barberino de SOUZA, T. ., Alves BRITO, T. ., FERNANDES, M. H. ., & Oliveira CARNEIRO, J. A. . (2022). Body composition of women with and without dynapenia defined by different cut-off points. Revista De Nutrição, 34, 1–10. Recuperado de https://seer.sis.puc-campinas.edu.br/nutricao/article/view/6215

Edição

Seção

ARTIGOS ORIGINAIS