Aplicação de modelagem de tópicos e análise de redes neurais para analisar a satisfação com a vida

Autores

Palavras-chave:

Satisfação com a vida, Aprendizado de máquina, Perceptron multicamadas, Análise de redes neurais, Qualidade de vida, Modelagem de tópicos

Resumo

O objetivo deste estudo é analisar os importantes fatores que influenciam a satisfação com a vida dos coreanos e identificar a sua importância. Para tanto, utilizamos artigos acadêmicos relacionados aos fatores que influenciam a satisfação com a vida e dados de questionários da pesquisa sobre integração social realizada anualmente pelo governo coreano. Um método de análise de modelagem de tópicos foi usado para derivar fatores de influência importantes, e um método de análise de rede neural, um dos métodos de aprendizado de máquina, foi usado para analisar a importância relativa dos fatores de influência. A análise mostrou que o fator que teve maior impacto na satisfação com a vida dos coreanos foi a satisfação com o trabalho. Outros fatores incluíram autoestima, nível de preocupação, ansiedade e nível de satisfação com o estado de saúde. O estudo utilizou métodos como modelagem de tópicos e análise de redes neurais para derivar os principais fatores que afetam a satisfação com a vida e analisar a importância relativa dos fatores envolvidos nela. Os resultados do estudo sugerem que, em reconhecimento da importância da satisfação no trabalho, futuras pesquisas nesta área devem ser expandidas e que o governo coreano deve introduzir várias políticas para promover esse aspecto.

Downloads

Não há dados estatísticos.

Referências

Amaral, L. S.; Araújo, G. M.; Moraes, R. A. R. Analysis of the factors that influence the performance of an energy demand forecasting model. Advanced Notes in Information Science, v. 2, p. 92-102, 2022. Doi: https://doi.org/10.47909/anis.978-9916-9760-3-6.111.

Beja, E. L. Direct and indirect impacts of parenthood on happiness. International Review of Economics, v. 62, p. 307-318, 2015. Doi: https://doi.org/10.1007/s12232-015-0231-2.

BioMed Central. BMC, research in progress. BMC. Available from: https://www.biomedcentral.com/. Accessed at: Jan. 31, 2024.

Blanchflower, D. G.; Oswald, A. J. Well-being over time in Britain and the USA. Journal of Public Economics, v. 88, n. 7-8, p. 1359-1386, 2004. Doi: https://doi.org/10.1016/S0047-2727(02)00168-8.

Cho, Y. J. Big Data Spss analysis method. Seoul: Hannarae, 2018.

Choi, Y. C. Analysis of factors influencing the trust levels of kyrgyzstan residents, using neural network analysis. Encontros Bibli, v. 28, p. 1-17, 2023. Doi: https://doi.org/10.5007/1518-2924.2023.e93526.

Choi, Y. C. Causal relationships between living conditions and happiness. Korean Journal of Local Government & Administration Studies, v. 34, n. 4, p. 331-346, 2014a. Doi: https://doi.org/10.18398/kjlgas.2014.28.1.1.

Choi, Y. C.; Choi, J.; Lee, J. Analysis of the influence of variables on the self-reliance of kyrgyzstan residents application of the decision tree analysis method. Baltic Journal of Law & Politics, v. 16, n. 3, p. 757-766, 2023.

Choi, Y. C.; Lee, J. H. Analysis of the factors affecting happiness level using IPA matrix: With special reference to Jeju province. Korean Journal of Local Government and Administration Studies, v. 28, n. 2, p. 401-423, 2014. Doi: https://doi.org/10.18398/kjlgas.2014.28.2.401.

Choi, Y. C.; Mohamed, N. Measuring social value of information technology: Application of topic modelling and system dynamics. Mobile Networks & Applications, 2023a. Doi: https://doi.org/10.1007/s11036-023-02228-1.

Choi, Y. C.; Mohamed, N. Methodological exploration of social value measurement in mobile network services: Application of social network analysis and system dynamics methodology. Mobile Networks & Applications, 2023b. Doi: https://doi.org/10.1007/s11036-023-02227-2.

Choi, Y.-C.; Kee, Y. The nature of Saemaul Undong as a rural development strategy: Topic modelling and text mining analysis. Iberoamerican Journal of Science Measurement and Communication, v. 4, n. 1, p. 1-11, 2024. Doi: https://doi.org/10.47909/ijsmc.90.

Choi, Y. C. Analysis of the effects of social policy factors on national happiness and national competitiveness in OECD countries. Korean Journal of Comparative Government Studies, v. 14, n. 4, p. 1-22, 2014b.

Chyi, H.; Mao, S. The determinants of happiness of China’s elderly population. Journal of Happiness Studies, v. 13, p. 167-185, 2012. Doi: https://doi.org/10.1007/s10902-011-9256-8.

Cui, Z. Happiness and consumption: Evidence from China. International Review of Economics, v. 65, p. 403-409, 2018. Doi: https://doi.org/10.1007/s12232-018-0303-1.

Diener, E.; Biswas-Diener, R. Will money increase subjective well-being? A literature review and guide to needed research. Social Indicators Research, v. 57, p. 119-169, 2002. Doi: https://doi.org/10.1023/A:1014411319119.

Easterlin, R. Does economic growth improve the human lot? Some empirical evidence. In: David, P. A.; Reder, M. W. Nations and households in economic growth. Massachusetts: Academic Press, 1974. p. 89-125.

Harvard T. H. Chan. School of Public Health. Available from: https://www.hsph.harvard.edu/. Accessed at: Jan. 31, 2024.

Jasielska, D. The moderating role of kindness on the relation between trust and happiness. Current Psychology, v. 39, p. 2065-2073, 2020. Doi: https://doi.org/10.1007/s12144-018-9886-7.

Kim, D. Cross-national pattern of happiness: Do higher education and less urbanization degrade happiness? Applied Research in Quality of Life, v. 13, p. 21-35, 2018. Doi: https://doi.org/10.1007/s11482-017-9504-0.

Korea Institute of Public Administration (KIPA). Available from: https://www.kipa.re.kr/site/kipa/main.do. Accessed at: Jan. 31, 2024.

Korean Statistical Information Service (KOSIS). Available from: https://kosis.kr/index/index.do. Accessed at: Jan. 31, 2024.

Larrosa, J. M. C.; Galgano, F.; Gutiérrez, E. Kinship network evolution in Argentina. An exploration based on online data. AWARI, v. 3, p. 1-8, 2023. Doi: https://doi.org/10.47909/awari.150.

Lee, S. S. Network analysis methods. Seoul: Nonhyung, 2003.

Panduro, A. F. Technologies applied to information control in organizations: A review. Decision Tech Review, v. 3, p. 1-6, 2023. Doi: https://doi.org/10.47909/dtr.02.

Pew Research Center. Available from: https://www.pewresearch.org. Accessed at: Jan. 31, 2024.

Podoshen, J. S.; Li, L.; Zhang, J. Materialism and conspicuous consumption in China: A cross-cultural examination. International Journal of Consumer Studies, v. 35, n. 1, p. 17-25, 2011. Doi: https://doi.org/10.1111/j.1470-6431.2010.00930.x.

Putnam, R. D. Bowling alone: The collapse and revival of American community. New York: Simon & Schuster, 2000.

Rego Rodríguez, F. A.; Germán Flores, L.; Vitón-Castillo, A. A. Artificial intelligence and machine learning: Present and future applications in health sciences. Seminars in Medical Writing and Education, v. 1, p. 9, 2022. Doi: https://doi.org/10.56294/mw20229.

Tiwari, P. et al. Comparing research trends through author-provided keywords with machine extracted terms: A ML algorithm approach using publications data on neurological disorders. Iberoamerican Journal of Science Measurement and Communication, v. 3, n. 1, p. 1-13, 2023. Doi: https://doi.org/10.47909/ijsmc.36.

Villa-Soto, J. Methods for the prevention of computer crimes in organizations: A review. Decision Tech Review, v. 2, p. 1-6, 2022. Doi: https://doi.org/10.47909/dtr.03.

Wang, H.; Cheng, Z.; Smyth, R. Consumption and happiness. Journal of Development Studies, v. 55, n. 1, p. 120-136, 2019. Doi: https://doi.org/10.1080/00220388.2017.1371294.

Downloads

Publicado

09-12-2024

Como Citar

Choi, Y.-C. (2024). Aplicação de modelagem de tópicos e análise de redes neurais para analisar a satisfação com a vida. Transinformação, 36. Recuperado de https://seer.sis.puc-campinas.edu.br/transinfo/article/view/11984

Edição

Seção

Digital information, data management and governance, and research information systems: an educational approach